Безотходные технологии производства цеолитов

Автор работы: Пользователь скрыл имя, 11 Сентября 2015 в 05:11, курсовая работа

Описание работы

Уровень современного промышленного производства синтетических цеолитов достигает нескольких сотен тысяч тонн в год и определяется главным образом, потребностями нефтехимической промышленности, где синтетические цеолиты некоторых структурных типов находят широкое применение в качестве катализаторов или их носителей. Также цеолиты широко применяются при сушке, очистке и разделении веществ, а также в качестве ионообменников.

Содержание работы

Введение………………………………………………………………………
3
1. Общие сведения о цеолитах…………………..………………………….
4
2. Безотходные технологии производства цеолитов……………………..
14
Заключение……………………………………………………………………
38
Список литературы…………………………………

Файлы: 1 файл

Цеолиты испоровить.docx

— 853.97 Кб (Скачать файл)

Установка для производства цеолита согласно настоящему изобретению содержит перемешивающие средства для добавления водного щелочного раствора к зольному продукту сжигания или к составу, содержащему алюмосиликат, формирования смеси и перемешивания ее; нагревательные средства для нагрева смеси, перемешанной перемешивающими средствами; средства облучения нагретой смеси электромагнитными волнами для формирования цеолита; очищающие средства для очистки цеолита, сформированного посредством облучения электромагнитными волнами, и высушивающие средства для высушивания очищенного цеолита.

С помощью установки, имеющей описанную выше конструкцию, реализуют процесс производства искусственного цеолита, упрощенный по сравнению с обычной технологией и отличающийся пониженным количеством примененной и удаленной щелочи при более низком расходе энергии, а также уменьшенным временем производства.

 

Рисунок 3 - Схема процесса, проводимого на установке для производства цеолита.

 

 

Рисунок 4 - Вид сбоку, блок облучения электромагнитными волнами в установке для производства цеолита, показанной на рис.3.

 

Рисунок 5 - Генератор электромагнитных волн, предназначенный для показанного на рис4 блока облучения электромагнитными волнами.

Как показано на рис.3, зольный продукт сжигания, такой как летучая зола, доставленный транспортирующим средством, хранят в емкости 1, служащей для приема сырьевого материала. Затем с помощью соответствующего насоса продукт переправляют к предварительному нагревателю 2. Далее, из емкости 3, служащей для хранения щелочи, добавляют водный щелочной раствор с концентрацией щелочи 1-30 масс.%. Нагревают смесь до 80-150°С и после этого переправляют ее в смеситель 4, где смесь перемешивают. Предварительный нагреватель 2 нагревают паром 17, а смеситель 4 приводят в действие посредством двигателя 18. Предварительный нагреватель 2, емкость 3 и смеситель 4 с двигателем 18 совместно образуют в данном варианте выполнения установки по изобретению средства для добавления водного щелочного раствора к зольному продукту сжигания и нагревательные средства для нагрева смеси.

Перемешанную смесь 19 в форме суспензии, сформированной в смесителе 4, помещают на конвейер 20 и транспортируют к блоку 21 облучения электромагнитными волнами. Во время транспортировки на конвейере смесь в течение 1-15 мин облучают электромагнитными волнами с частотой 2450 МГц, генерируемыми излучателями 5 электромагнитных волн, помещенными над конвейером 20. В этих условиях в перемешанной смеси 19 быстро развивается реакция образования цеолита, приводящая к формированию цеолита. Следует отметить, что условия облучения электромагнитными волнами можно регулировать в интервале частот 300 МГц- 30 ГГц (длина волны 1 см - 1 м) и в интервале времени облучения 1-30 мин.

После завершения облучения электромагнитными волнами перемешанную смесь 19 отверждают и далее переправляют к очищающим средствам, выполненным в виде очищающей машины 7, где отмывают щелочь, присоединенную к сформировавшемуся цеолиту. Затем очищенный цеолит обезвоживают с помощью центрифуги 8 и подвергают высушиванию в мягких условиях нагревом посредством пара в высушивающих средствах, выполненных в данном варианте установки в виде барабанной (вращающейся) паровой сушилки 9. В паровой сушилке 9 получают искусственный цеолит. Его помещают в емкость 10, служащую для приема продукта, взвешивают для определения значения плотности, упаковывают и отгружают в виде продукта 16.

Водный щелочной раствор, полученный из центрифуги 8, переправляют к емкости 11, служащей для приема щелочи, обрабатывают в аппаратах 12 и 13 соответственно для первичной и вторичной обработки сточной воды, пропускают через контролирующий аппарат 14 и, далее, удаляют в виде сточной воды 15.

Как показано на рис. 4, в блоке 21 облучения электромагнитными волнами регулятор 22 подачи перемешанной смеси 19 помещен около стартовой точки конвейера 20, над которым размещено множество излучателей 5 электромагнитных волн. Около конечной точки конвейера 20 помещен настил 25 для отверждения сформированного цеолита, а внутри конвейера 20 помещен экран 26, не пропускающий микроволновую радиацию.

Как показано на рис. 5, рядом с микроволновым генератором 23 расположены изолятор 24, предотвращающий утечку генерированной микроволновой радиации, прибор 27 контроля мощности, направленное соединительное устройство 28 для передачи генерированной микроволновой радиации к излучателю 32, осуществляющему микроволновое облучение материала, индикатор 29, согласующее устройство 30, фиксированный распределитель 31, излучатель 32, осуществляющий микроволновое облучение материала, подлежащего нагреву микроволновой радиацией. Таким образом, указанный блок 21 облучения, включающий в себя микроволновый генератор 23, образует средства облучения нагретой смеси электромагнитными волнами.

Во время транспортировки в перемешанной смеси 19, прошедшей через регулятор 22 подачи и помещенной на конвейере 20, под воздействием облучения микроволновой радиацией, генерированной микроволновым генератором 23, быстро протекает реакция образования цеолита. Поэтому цеолит формируется за то короткое время, пока смесь не достигнет конечной точки конвейера 20. Сформированный таким образом цеолит отверждают на предназначенном для этого настиле 25, а затем, как описано выше, переправляют к очищающей машине 7, в которой проводят специальную обработку.

В соответствии с этим, в ходе добавления водного щелочного раствора к зольному продукту сжигания, перемешивания полученной в результате этого смеси, нагрева сформированной таким образом перемешанной смеси 19 и облучения перемешанной смеси 19 электромагнитными волнами с целью формирования цеолита требуется минимальное количество щелочи для того, чтобы реакция охватила внутреннюю область твердофазной частицы зольного продукта сжигания, а щелочь сразу же сформировала цеолит посредством тепла, генерируемого из внутренних зон частиц за счет облучения электромагнитными волнами. Поэтому этот процесс обеспечивает возможность производства искусственного цеолита за короткий отрезок времени, причем с пониженным количеством примененной и удаленной щелочи. Кроме того, отпадает необходимость в обычных процессах разделения твердая фаза-жидкость и очистки, что упрощает процесс в целом.

В дополнение к этому, поскольку облучение электромагнитными волнами вызывает генерацию тепла только в перемешанной смеси 19, фактически без нагрева находящихся рядом устройств, атмосферных газов и т.д., достигается высокая тепловая эффективность, так что расход энергии можно понизить. Кроме того, поскольку излучению электромагнитной волны предшествует предварительный нагрев перемешанной смеси 19 до приблизительно 80-150°С, эффективность теплового превращения повышается до величины приблизительно 70%.

Главным компонентом цеолита, сформированного согласно одному из вариантов осуществления настоящего изобретения, является филлипсит. Этот цеолит может включать в себя также фожазит, цеолит А, гидроксисодалит и т.д. с нецеолитными компонентами, т.е. компонентами, отличными от цеолитов, такими как несгоревший углерод, железо и т. д.

Под воздействием облучения смеси электромагнитными волнами с частотой 2450 МГц дипольные моменты молекул воды, присутствующих в перемешанной смеси 19, энергично колеблются (с частотой от нескольких сотен миллионов до нескольких миллиардов колебаний в секунду), обеспечивая высокую температуру за счет генерации тепла внутри частиц зольного продукта сжигания или аналогичного материала, что сразу же промотирует термическую щелочную реакцию. Таким образом, реакцию формирования цеолита, которая в обычных способах занимает время от нескольких часов до нескольких десятков часов, можно завершить за несколько минут.

Так как перемешанная смесь 19 существует в виде суспензии, повышается эффективность обработки и транспортировки в ходе производственного процесса. Далее, эффективную генерацию тепла можно реализовать за счет облучения электромагнитными волнами. В результате количество щелочи можно свести к минимуму, необходимому для протекания реакции, что приводит к огромному сокращению количества отходов в виде удаленной щелочи.

Следует отметить, что настоящее изобретение не ограничено описанным выше вариантом осуществления изобретения. Компоненты, концентрации и количества добавленного водного раствора щелочи можно варьировать в зависимости от типа, компонентов, свойств и т.д. сырьевого материала, такого как зольный продукт сжигания. Надлежащим образом можно изменять, кроме того, свойства перемешанной смеси и количество воды в ней, а также частоты, время воздействия и другие характеристики электромагнитных волн, применяемых в процессе облучения.

Пример 1: смесь с соотношением 1:2-5 угольной золы и зольного продукта сжигания шлама, образованного при изготовлении бумаги, обработали в описанных выше условиях, применяя показанную на фиг.1 установку для производства цеолита. Для соотношения в интервале 1:2-5 степень превращения в искусственный цеолит Са-типа составляла приблизительно 90%. Оказалось возможным получить с высокой эффективностью искусственный цеолит указанного типа посредством облучения электромагнитными волнами в течение 3-5 мин за счет ускорения формирования цеолитного ядра при добавлении 10-20 масс.% стеклянного порошка к зольному продукту сжигания шлама, образованного при изготовлении бумаги.

Пример 2: вольный продукт сжигания городского мусора (зольный продукт RDF) обработали, применяя показанную на фиг.1 установку для производства цеолита. Оказалось возможным сократить время облучения электромагнитными волнами, требуемое для превращения указанной золы в цеолит, в два-три раза по сравнению с вариантом обработки угольной золы.

Пример 3: при обработке сырьевого материала с различным соотношением Si/Al, такого как зольный продукт сжигания, компоненты сформированного искусственного цеолита можно контролировать регулировкой соотношения Са, Na и т.д., причем указанные вещества являются компонентами водного щелочного раствора, который добавляют из емкости 3, служащей для хранения щелочи. Такой же контроль можно осуществить, регулируя время облучения электромагнитными волнами.

Далее провели(кто проверили ) сопоставление способа изготовления искусственного цеолита согласно настоящему изобретению и такого же способа изготовления посредством обычного горячего водного щелочного раствора. В способе согласно настоящему варианту осуществления изобретения оказалось возможным понизить загрязняющую нагрузку до 5 кг на тонну искусственного цеолита по сравнению с обычной величиной 100 кг и уменьшить расход энергии (в пересчете на тяжелую нефть) до 50 л на тонну искусственного цеолита по сравнению с величиной 500 л, необходимой в обычном способе. Кроме того, оказалось возможным понизить производственные затраты на одну тонну искусственного цеолита до значения, составляющего приблизительно 1/3,5-1/5 обычной стоимости.

Настоящее изобретение(какое) можно использовать в качестве эффективной технологии производства цеолита, применяя в качестве сырьевого материала зольный продукт сжигания или состав, содержащий алюмосиликат, в том числе природный цеолит.

1. Способ производства цеолита, предусматривающий добавление водного щелочного раствора к зольному продукту сжигания или составу, содержащему алюмосиликат, с формированием смеси в виде суспензии или пульпы, нагрев указанной смеси и прямое облучение указанной смеси электромагнитными волнами с частотами в интервале от 300 МГц до 30 ГГц при одновременном непрерывном перемещении указанной смеси с результирующим формированием цеолита.

2. Способ производства цеолита  по п.1, отличающийся тем, что указанный  состав представляет собой природный  цеолит или цеолит, который не  был превращен в филлипсит.

3. Установка для производства цеолита, содержащая перемешивающие средства для добавления водного щелочного раствора к зольному продукту сжигания или составу, содержащему алюмосиликат, формирования и перемешивания смеси, нагревательные средства для нагрева смеси, перемешанной указанными перемешивающими средствами, средства облучения электромагнитными волнами для облучения указанной нагретой смеси электромагнитными волнами с формированием цеолита, очищающие средства для очистки указанного цеолита, сформированного облучением электромагнитными волнами, и высушивающие средства для высушивания очищенного цеолита.

Образование углекислоты нежелательно в отношении коррозии; значительные количества щелочи требуют частых продувок, и следовательно, значительного расхода воды на эти продувки или других мер. В этом смысле значение предварительного осаждения известью карбонатной жесткости примерно до 3° следует особо подчеркнуть.

Фильтрация через гравий, кварцевый песок и особенно через мраморную крошку, являющуюся кристаллическим карбонатом кальция, является стимулом для осаждения CaCO3, по существу идущего на фильтры в пересыщенном растворе, и снижает остаточную жесткость воды, умягченной известкованием. Степень снижения остаточной жесткости зависит от температуры воды и скорости фильтрации, причем мраморная крошка действует в этом смысле в 1,5 - 2 раза активнее, чем кварцевый песок. В отдельных случаях схема может несколько отличаться от приведенной.

Рисунок 6 – Схема очистки воды цеолитами

На рис. 6 представлена схема станции умягчения производительностью 50 м3/ч на одной из ГРЭС. Здесь комбинированный известково-цеолитовый метод отличается установкой двух последовательно работающих отстойников, из которых первый является резервуаром для реакции — удаление временной жесткости и солей магния, коагуляция органических веществ, находящихся в коллоидальном состоянии, и второй — резервуаром для окончания указанных процессов и осаждения; вместо обычных кварцевых фильтров здесь установлены фильтры с мраморной крошкой. При фильтрации воды через мраморную крошку на фильтре не только задерживаются остатки CaCO3, Mg(OH)2 и коллоидальной гидроокиси алюминия, но происходит снижение общей щелочности и жесткости воды примерно на 1°.

По-видимому, такое доумягчение воды может быть результатом довыпадения здесь из воды карбоната кальция, находившегося в пересыщенном растворе (растворимость CaCO3 весьма мала) при контакте между этим раствором (умягчаемая вода) и частицами мрамора, представляющими собой тот же карбонат кальция и играющими роль дополнительных центров кристаллизации.

Аммиак является одним из основных компонентов загрязнения хозяйственно-бытовых сточных вод и некоторых промстоков. Лабораторные и промышленные опыты института ВостокСибНИИТГиМСа и филиала ВНИИ ВОДГЕО на городских очистных сооружениях г. Улан-Удэ и г. Дивногорска показали высокую обменную емкость наших цеолитов по аммиаку — полную 860 г-экв/м3 и рабочую 540 г-экв/м3. 100% очистка от аммиака при начальной концентрации 50 мг/л обеспечивается при прохождении 55 объемов, полное насыщение наступает при прохождении 857 объемов. Во всех опытах отмечается чтабильное снижение содержания аммиака и признана эффективность его удаления с помощью цеолитовых фильтров. Важна, например, доочистка сточных вод г. Улан-Удэ для сохранения чистоты р Селенги, впадающей в оз. Байкал. Возможно, на базе цеолита, создание ионообменных фильтров для доочистки сточных вод от аммиака производительностью 1000 м3/час, где 1 м3 загрузки способен извлечь 3,96 кг аммиака при одном фильтрацикле, равном 5,4 сут.

Информация о работе Безотходные технологии производства цеолитов