Адсорбция газов на твердых непористых и макропористых адсорбентах

Автор работы: Пользователь скрыл имя, 16 Марта 2014 в 19:57, курсовая работа

Описание работы

Адсорбция - это концентрирование различных веществ на поверхности раздела двух систем (твердое вещество - жидкость, твердое вещество - газ, жидкость - газ, жидкость - жидкость). Вещество, которое удерживает на своей поверхности частицы, посредством создания адсорбционного силового поля за счёт нескомпенсированности межмолекулярных сил вблизи этой поверхности, называется адсорбентом. Вещества, которые адсорбируются, являются адсорбатами. Адсорбция может сопровождаться химической реакцией между адсорбентом и адсорбатом. Такой процесс называется хемосорбцией. Процесс, обратный адсорбции, называют десорбцией. Именно благодаря адсорбции могут служить катализаторами твердые вещества.

Содержание работы

Введение…………………………………………………………………………...3
1Теоретические аспекты адсорбции газов на твердых непористых и макропористых адсорбентах…………………………………………………..…5
1.1Общая характеристика адсорбции…………….....…………………….5
1.2Свойства абсорбентов……………………………...………………….12
2Теории адсорбции……………………………………………………………...17
2.1Теория мономолекулярной адсорбции Ленгмюра………………......17
2.2Теория полимолекулярной адсорбции Поляни и уравнение Фрейндлиха………………………………………………………………………20
Заключение……………………………………………………………………….23
Список используемых источников…………………………...………………...25

Файлы: 1 файл

Х адсорб..docx

— 60.39 Кб (Скачать файл)

Применение адсорбционных процессов.

Адсорбция газов на твердых поверхностях используется в некоторых отраслях пищевой промышленности, а именно масложировой (например, в производстве маргарина) и в бродильной (например, в производстве дрожжей) для очистки технологических газовых потоков с целью предотвращения выбросов вредных веществ в атмосферу. Поглощение паров воды происходит на пористых веществах, которые выполняют роль твердого адсорбента. Подобные процессы наблюдаются в отношении сахара, соли и сухарей. Адсорбционный способ регулирования газового состава хранилищ скоропортящихся продуктов позволяет в несколько раз сократить потери и увеличить сроки хранения.

Адсорбция различных пищевых кислот, лимонной в частности, снижает по сравнению с водой поверхностное натяжение большинства прохладительных напитков. Адсорбция веществ на поверхности раздела жидкость - газ способствует устойчивости пен. Подобный процесс имеет место в бродильной промышленности при производстве дрожжей и некоторых других полупродуктов. Усиление смачивания водой различных поверхностей широко используется в промышленности в качестве сопутствующего процесса при мойке оборудования, подготовке сырья, обработке полуфабрикатов и т.д. Адсорбция на границе твердое тело - жидкость широко применяется при очистке жидкостей (например, диффузионного сока при производстве сахара, растительных масел и соков) от примесей [11, с.80].

Итак, адсорбция как поверхностное явление находит широкое применение в пищевых отраслях промышленности.

Таким образом, можно сделать вывод, что адсорбция является самопроизвольным процессом, течение которого сопровождается уменьшением свободной энергии и энтропии системы. Процессы адсорбции избирательны и обратимы. Адсорбция газов на твердых поверхностях используется в некоторых отраслях пищевой промышленности, а именно масложировой (например, в производстве маргарина) и в бродильной (например, в производстве дрожжей) для очистки технологических газовых потоков с целью предотвращения выбросов вредных веществ в атмосферу.

1.2 Свойства абсорбентов

 

В процессах адсорбции, так же как и в процессах абсорбции, поглощающие вещества (адсорбенты обладают селективными свойствами по отношению к поглощаемым газам и парам. Иными словами, применение адсорбционных процессов в качестве метода разделения газовых смесей основано на том, что газовая смесь, приведенная в соприкосновение с адсорбентом, освобождается лишь от одного компонента, в то время как другие оказываются непоглощенными.

Если в процессах абсорбции селективные качества процесса определялись растворимостью или нерастворимостью газа в поглощающей жидкости, то в процессах адсорбции критерием селективных качеств является статическая активность адсорбента.

Из смеси газов, приведенных в соприкосновение с адсорбентом, в первую очередь и в значительно большем количестве поглощается газ или пар того вещества, которое имеет более высокую температуру кипения. В большинстве случаев температура кипения поглощаемого газа (например, паров бензола) сильно отличается от температуры кипения инертного газа (например, воздуха) и присутствие инертного газа почти не оказывает влияния на ход процесса [13, с.13].

В данном случае поглощение бензола из паровоздушной смеси с парциальной упругостью паров бензола р протекает точно так же, как и поглощение чистых паров бензола, имеющих то же давление. Разделение адсорбционным методом смеси газов, компоненты которой имеют близко лежащие температуры кипения, предоставляет большие трудности или практически невозможно.

Адсорбент должен обладать следующими основными свойствами:

-необходимой селективностью;

-отсутствием каталитической активности и химической инертностью к компонентам разделяемой смеси;

-достаточной механической прочностью;

-линейностью изотермы адсорбции;

-быть доступным.

Некоторые адсорбенты способны необратимо сорбировать непредельные соединения, например оксид алюминия может поглощать изобутилен. Кроме того, некоторые олефины (пропилен и бутилены) могут полимеризоваться на силикагеле. Указанные явления вызывают необходимость в соответствующем модифицировании адсорбентов, что позволяет иногда также «выпрямить» изотерму сорбции.

В соответствии с классификацией Киселева адсорбенты делят на три типа:

-неспецифические, на поверхности которых нет каких-либо функциональных групп и ионов (угли, графитированная сажа, неполярные пористые полимеры);

-имеющие на поверхности положительные заряды (на гидроксилированной поверхности силикагеля, на катионах молекулярных сит, на катионах солей);

-имеющие на поверхности связи или группы атомов с сосредоточенной электронной плотностью. Адсорбентами последнего типа являются некоторые полярные пористые полимеры, например содержащие нитрильные группы, привитые сорбенты и т. д.

Основными факторами, определяющими взаимодействие между разделяемым веществом и адсорбентом, являются дисперсионные силы (проявляющиеся при разделении, например, на колонке с углем), водородная связь (возникающая при разделении на силикагеле или оксиде алюминия), а также другие типы полярных взаимодействий [6, с.61].

Селективность адсорбентов, как и селективность неподвижных жидкостей, может оцениваться с помощью условной хроматографической полярности, а также факторов полярности Роршнайдера - Мак-Рейнольдса. Это обеспечивает более широкий подход к оценке возможностей хроматографических сорбентов при подборе условий разделения анализируемых смесей.

Основной причиной размытия зон хорошо адсорбирующихся веществ при обычных скоростях газа-носителя является внешняя диффузия (лишь при адсорбции на цеолитах - молекулярных ситах - внутреннедиффузионная массопередача является более медленной стадией, так как поры адсорбента достаточно узки) [1, с.15].

Таким образом, расширение пор (и достижение их однородности) - эффективный способ увеличения четкости и сокращения продолжительности разделения. Из уравнений и следует, что в тех случаях, когда член С2 достаточно велик, степень разделения на колонке заданной длины зависит лишь от коэффициента селективности колонки и не изменяется при переходе от одного члена гомологического ряда к другому и критерий R уменьшается с увеличением сорбируемости при постоянном коэффициенте селективности колонки. Таким образом, в газоадсорбционной проявительной хроматографии нецелесообразно использовать очень сильные сорбенты.

По геометрической структуре адсорбенты делят на 4 типа.

1.Непористые адсорбенты  - графитированная сажа, аэросил (мелкодисперсный диоксид кремния), кристаллы солей. Такие адсорбенты либо наносят на твердые носители, либо из них формируют гранулы. Удельная поверхность адсорбентов этого типа колеблется от сотых долей до сотен м2/г;

2.Однородно-макропористые адсорбенты. Получают, например, обработкой силикагеля водяным паром при 700-800°С (гидротермальная обработка). При этом удельная поверхность уменьшается до 25-50 м2/г и получаются широкие поры порядка сотен нм;

3.Однородно-тонкопористые адсорбенты - молекулярные сита (цеолиты), так называемые углеродные молекулы сита (высокопористый углерод с поверхностью порядка тысячи м2/г);

4.Неоднородно-пористые адсорбенты, в частности силикагель, содержащие как широкие, так и узкие поры. Естественно, что они не могут быть успешно использованы в хроматографии без соответствующего модифицирования.

Активные угли имеют поверхность 1000-1700 м2/г, поэтому силы взаимодействия их с молекулами разделяемых веществ очень велики, что ограничивает область применения этих адсорбентов анализом легких газов. Поскольку угли неполярны, удерживание оксида углерода меньше, чем метана, а этилена - меньше, чем этана.

Углеродные молекулярные сита, получаемые путем термодеструкции органических полимеров, в частности поливиннлиденхлорида, особенно четко проявляют свойства угольных адсорбентов.

На колонке с этими адсорбентами вода элюируется раньше метана, ацетилен раньше этилена и этана. Разделение легких газов (кислорода, азота, оксида углерода, метана и диоксида углерода) осуществляется при программировании температуры. Показана также возможность определения формальдегида, сероводорода, диоксида серы за время, измеряемое несколькими минутами [4, с.68].

Термическая сажа, графитированная при 3000 °С, имеет удельную поверхность 6-30 м2/г. Агрегаты соответствующего размера получают путем многократного потряхивания мелкодисперсного порошка. Будучи неполярным адсорбентом, сажа нечувствительна к полярности сорбата, однако способна по-разному адсорбировать пространственные изомеры. В работах показаны возможности разделения трансизомеров 1,4-метилциклогексанола, цис- и гранс-алкенов и алкадиенов (гранс-изомеры выгоднее располагаются на поверхности сажи и поэтому удерживаются сильнее), четырех геометрических изомеров 1,2,4,5-тетраметилциклогексана цис- и трансизомеров циклоалканов, эндобициклоалканов и алкенов, а также изомерных ксилолов, крезолов, диоксибензолов и т. д.

На поверхность гранул графитированной сажи часто наносят небольшие количества неподвижных жидкостей для получения модифицированных сорбентов требуемой селективности.

В качестве неполярного адсорбента может быть использована стандартная сажа марки ПМ-15. Было получено удовлетворительное разделение углеводородов, спиртов, эфиров и кислот. Поскольку сажа ПМ-15 (как и графитированная термическая сажа) отличается недостаточной механической прочностью, с целью устранения этого недостатка к навеске сажи добавляют раствор модификатора (высокотемпературного силоксанового полимера) с последующим перемешиванием и испарением растворителя. Модификатор обеспечивал не только увеличение механической прочности частиц, но также позволил улучшить эффективность колонки и сократить время анализа как неполярных, так и полярных соединений. В другом варианте предусмотрено нанесение пыли сажи ПМ-15 в смеси с раствором модификатора на инертный твердый носитель. При этом модификатор способствовал приклеиванию частиц сажи к поверхности носителя [6, с.67].

В итоге, сделаем вывод, что адсорбент должен обладать следующими основными свойствами: необходимой селективностью; отсутствием каталитической активности и химической инертностью к компонентам разделяемой смеси; достаточной механической прочностью; линейностью изотермы адсорбции; быть доступным.

 

 

 

 

 

 

 

 

2.Теории адсорбции

 

2.1.Теория мономолекулярной адсорбции Ленгмюра

 

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело – газ или твердое тело – раствор [12, с.12].

Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр, основывается на следующих положениях.

1) Адсорбция является  локализованной и вызывается силами, близкими к химическим.

2) Адсорбция происходит  не на всей поверхности адсорбента, а на активных центрах, которыми являются выступы либо впадины на поверхности адсорбента, характеризующиеся наличием т.н. свободных валентностей. Активные центры считаются независимыми (т.е. один активный центр не влияет на адсорбционную способность других), и тождественными.

3) Каждый активный центр  способен взаимодействовать только  с одной молекулой адсорбата; в результате на поверхности может образоваться только один слой адсорбированных молекул.

4) Процесс адсорбции является  обратимым и равновесным – адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; т.о., через некоторое время между процессами адсорбции и десорбции устанавливается динамическое равновесие.

Рисунок 2 - Изотерма мономолекулярной адсорбции

В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 – х):

                        (1)

            (2)

          (3)

Отсюда находим х:

                (4)

Разделив числитель и знаменатель правой части уравнения (IV.10) на kA, получим:

                  (5)

Максимально возможная величина адсорбции Го достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Го. Подставив это в уравнение (5), получаем:

               (6)

            (7)

Уравнение (7) есть изотерма мономолекулярной адсорбции, связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b – некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров.

График изотермы адсорбции Ленгмюра приведен на рис. 1. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

При описании процесса адсорбции газов в уравнении (7) концентрация может быть заменена пропорциональной величиной парциального давления газа:

                (8)

Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата [12, с.14].

Информация о работе Адсорбция газов на твердых непористых и макропористых адсорбентах