Термоядерная реакция

Автор работы: Пользователь скрыл имя, 03 Декабря 2014 в 08:01, доклад

Описание работы

Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний 10-15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами.

Файлы: 1 файл

Термоядерная реакция.docx

— 658.45 Кб (Скачать файл)
  • Минимальная вероятность аварийного взрывного увеличения мощности реакции в термоядерном реакторе.

  • Отсутствие продуктов сгорания.

  • Нет необходимости использовать материалы, которые могут быть использованы для производства ядерных взрывных устройств, таким образом исключается возможность саботажа и терроризма.

  • По сравнению с ядерными реакторами вырабатываются радиоактивные отходы с коротким периодом полураспада[8].

Стоимость электроэнергии в сравнении с традиционными источниками[править | править вики-текст]

Критики указывают, что вопрос о рентабельности ядерного синтеза в производстве электроэнергии в общих целях остаётся открытым. В том же исследовании, проведённом по заказу Бюро науки и техники британского парламента, указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от доступной в будущем технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, длительности эксплуатации и стоимости утилизации реактора[9].

Отдельно стоит вопрос стоимости исследований. Страны Евросоюза тратят около 200 млн евро ежегодно на исследования, и прогнозируется, что нужно ещё несколько десятилетий, пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных неядерных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.[источник не указан 1776 дней]

Доступность коммерческой энергии ядерного синтеза[править | править вики-текст]

Несмотря на распространённый оптимизм (с начала первых исследований 1950-х годов), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены. Неясным является даже то, насколько может быть рентабельным производство электроэнергии с использованием термоядерного синтеза. Хотя наблюдается постоянный прогресс в исследованиях, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, которая, как оценивается, должна быть в 100 раз интенсивнее, чем в традиционных ядерных реакторах. Тяжесть проблемы усугубляется тем, что сечение взаимодействия нейтронов с ядрами с ростом энергии перестаёт зависеть от числа протонов и нейтронов и стремится к сечению атомного ядра — и для нейтронов энергии 14 МэВ просто не существует изотопа с достаточно малым сечением взаимодействия. Это обуславливает необходимость очень частой замены конструкций D-T и D-D реактора и снижает его рентабельность настолько, что стоимость конструкций реакторов из современных материалов для этих двух типов оказывается больше стоимости произведённой на них энергии. Решения возможны трёх типов[источник не указан 1433 дня]:

  1. Отказ от чистого ядерного синтеза и употребление его в качестве источника нейтронов для деления урана или тория.

  1. Отказ от D-T и D-D синтеза в пользу других реакций синтеза (например D-He).

  1. Резкое удешевление конструкционных материалов или разработка процессов их восстановления после облучения. Требуются также гигантские вложения в материаловедение, но перспективы неопределённые.

Побочные реакции D-D (3 %) при синтезе D-He осложняют изготовление рентабельных конструкций для реактора, хотя они возможны на современном технологическом уровне.

Различают следующие фазы исследований:

1. Равновесие или режим «перевала» (Break-even): когда общая энергия, выделяемая в процессе синтеза, равна общей энергии, затраченной на запуск и поддержку реакции. Это соотношение помечают символом Q.

2. Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, которые продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор (2012) не достигнут.

3. Воспламенение (Ignition): стабильная самоподдерживающаяся реакция. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Макет реактора ITER. Масштаб 1:50

Следующим шагом в исследованиях должен стать Международный термоядерный экспериментальный реактор (International Thermonuclear Experimental Reactor, ITER). На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора.

Окончательной фазой исследований станет DEMO: прототип промышленного реактора, на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Вслед за DEMO может начаться проектирование и строительство коммерческих термоядерных реакторов (условно называются ТЯЭС — термоядерные электростанции). Строительство ТЯЭС может начаться не раньше 2045 года.[10]

Существующие токамаки[править | править вики-текст]

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия

    • Т-3 — первый функциональный аппарат.

    • Т-4 — увеличенный вариант Т-3

    • Т-7 — уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом[11] на базе сплава ниобий-олово, охлаждаемого жидким гелием. Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.

    • Т-10 и PLT — следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона — всего в двести раз.

    • Т-15 — реактор сегодняшнего дня со сверхпроводящим соленоидом[11], дающим поле напряжённостью 3,6 Тл.

    • Глобус-М — сферический токамак, новейший токамак в России, созданный в 1999 году.

  • Казахстан

    • Казахстанский Материаловедческий Токамак (КМТ) — это экспериментальная термоядерная установка для исследований и испытаний материалов в режимах энергетических нагрузок, близких кITER и будущих энергетических термоядерных реакторов. Место строительства КТМ — город Курчатов[12][13].

  • Ливия

    • ТМ-4А

  • Европа и Великобритания

    • Joint European Torus[14] — самый крупный в мире действующий токамак, созданный организацией Евратом в Великобритании. В нём использован комбинированный нагрев: 20 МВт — нейтральная инжекция, 32 МВт — ионно-циклотронный резонанс. В итоге, критерий Лоусона лишь в 4—5 раз ниже уровня зажигания.

    • Tore Supra[15] — токамак со сверхпроводящими катушками (при 1.8 K)[11], один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).

  • США

    • Test Fusion Tokamak Reactor (TFTR)[16] — крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.

    • National Spherical Torus Experiment (NSTX)[17] — сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.

    • Alcator C-Mod[18] — один из трёх крупнейших токамаков в США (два других — NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 года.

    • DIII-D[19] — токамак США, созданный и работающий в компании General Atomic в Сан-Диего.

  • Япония

    • JT-60[20] — крупнейший японский токамак, работающий в Японском институте исследований атомной энергии (англ.) с 1985 года.

    • Triam — с сверхпроводящими магнитами[11]

  • Китай

    • EAST (Experimental Advanced Superconducting Tokamak) — Экспериментальный усовершенствованный сверхпроводимый токамак. Является глубокой модернизацией Российского токамака HT-7. Работает в рамках международного проекта ITER. Первые успешные испытания были проведены летом 2006 года. Принадлежит Институту физики плазмы Китайской академии наук. Расположен в городе Хэфэй, провинции Аньхой. На этом реакторе в 2007 году был проведён[21] первый в мире «безубыточный» термоядерный синтез, с точки зрения соотношения затраченной/полученной энергии. На данный момент это соотношение составляет 1:1,25. В ближайшем будущем планируется довести это соотношение до 1:50

История исследований возможности ХЯС[править | править вики-текст]

Предположение о возможности холодного ядерного синтеза (ХЯС) до сих пор не нашло подтверждения и является предметом постоянных спекуляций, однако эта область науки до сих пор активно изучается.

ХЯС в клетках живого организма[править | править вики-текст]

Наиболее известны[источник не указан 521 день] работы по «трансмутации» Луи Керврана (англ.), опубликованные в 1935, 1955 и 1975 годах[5]. За свои работы Кервран был удостоен Шнобелевской премии[6].

В 2003 году была опубликована книга[7] Владимира Ивановича Высоцкого[8], заведующего кафедры математики и теоретической радиофизики Киевского национального университета имени Тараса Шевченко, в которой утверждается, что найдены новые подтверждения «биологической трансмутации».[источник не указан 521 день]

ХЯС в электролитической ячейке[править | править вики-текст]

Сообщение химиков Мартина Флейшмана (англ.)русск. и Стенли Понса (англ.)русск. об электрохимически индуцированном ядерном синтезе — превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде, появившееся в марте 1989 года, наделало много шума.[9][10][11][12] Журналисты назвали данные опыты ХЯС.

Эксперименты Флейшмана и Понса не смогли воспроизвести другие ученые, и научное сообщество считает, что их заявления неполны и неточны.[13][14][14][15][16][17][18]

Экспериментальные подробности[править | править вики-текст]

Question book-4.svg

В этом разделе не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.

Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.

Эта отметка установлена 16 июля 2013.

Некоторые опыты по «холодному ядерному синтезу» включали в себя:

«катализатор», такой как никель или палладий, в виде тонких пленок, порошка или губки;

«рабочее тело», содержащее изотопы водорода: тритий, дейтерий или протий;

систему «возбуждения» ядерных превращений изотопов водорода «накачкой» «рабочего тела» энергией — посредством нагревания, механического давления, воздействием лазерных лучей, акустических волн, электромагнитного поля или электрического тока.

Достаточно популярная[источник не указан 259 дней] экспериментальная установка камеры холодного синтеза состоит из палладиевых электродов, погружённых в электролит, содержащий тяжелую или сверхтяжёлую воду. Камеры для электролиза могут быть открытыми или закрытыми. В системах открытых камер газообразные продукты электролиза покидают рабочий объём, что затрудняет калькуляцию баланса между полученной и затраченной энергией. В экспериментах с закрытыми камерами продукты электролиза утилизируются, например, путем каталитической рекомбинации в специальных частях системы. Экспериментаторы, в основном, стремятся обеспечить устойчивое выделение тепла непрерывной подачей электролита. Проводятся также опыты типа «тепло после смерти», в которых избыточное (за счёт предполагаемого ядерного синтеза) выделение энергии контролируется после отключения тока.

Холодный ядерный синтез — третья попытка[править | править вики-текст]

После неудач в 1989 году и фальсификации результатов[19] в 2002 «холодный термояд» прочно зарекомендовал себя как псевдонаука[источник не указан 594 дня]. Однако с 2008 года, после публичной демонстрации эксперимента с электрохимической ячейкой Ёсиаки Аратой (англ.)русск. из Осакского университета о холодном ядерном синтезе заговорили снова.[20] Однако большинство химиков и физиков пытаются найти альтернативное (не ядерное) объяснение явления, тем более что информации о нейтронном излучении не поступало. Например, свойствами кристаллической решётки палладия[20].

ХЯС в Болонском университете[править | править вики-текст]

В январе 2011 года Андреа Росси (Andrea Rossi, Болонья, Италия), как утверждается, испытал опытную установку "Катализатор энергии Росси" по превращению никеля в медь при участии водорода, а 28 октября 2011 года им была продемонстрирована для журналистов известных СМИ и заказчика из США промышленная установка на 1 МВт. История вызвала всплеск интереса СМИ, однако аппаратура Росси никогда не подвергалась независимой проверке.

По одному из заявлений Росси в январе 2011 года, он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент.[21].

Информация о работе Термоядерная реакция