Синхронный генератор

Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 22:01, курсовая работа

Описание работы

Синхронные машины применяются во многих отраслях народного хозяйства, в частности, в качестве генераторов в передвижных и стационарных электрических станциях, двигателей в установках не требующих регулирования частоты вращения или нуждающихся в постоянной частоте вращения.
Наиболее распространена конструктивная схема синхронной машины с вращающимся ротором, на котором расположены явновыраженные полюсы. Иногда явнополюсные синхронные машины малой мощности выполняют по конструктивной схеме машин постоянного тока, то есть с полюсами, расположенными на статоре, коллектор заменяется контактными кольцами.
Синхронные двигатели серии СД2 и генераторы серии СГ2 изготавливают мощностью от 132 до 1000 кВт, при высоты оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.
Электрические машины серий СД2 и СГ2 рассчитаны на продолжительный режим работы. Их возбуждение осуществляется от устройства, питающегося от дополнительной обмотки, заложенной в пазы статора.

Содержание работы

Введение
1. Исходные данные
2. Магнитная цепь двигателя. Размеры, конфигурация, материал
2.1 Конфигурация
2.2 Главные размеры
2.3 Сердечник статора
2.4 Сердечник ротора
2.5 Сердечник полюса и полюсный наконечник
3. Обмотка статора
4. Расчет магнитной цепи
4.1 Воздушный зазор
4.2 Зубцы статора
4.3 Спинка статора
44 Полюсы
4.5 Спинка ротора
4.6 Воздушный зазор в стыке полюса
4.7 Общие параметры магнитной цепи
5. Активное и индуктивное сопротивление обмотки статора для установившегося режима
6. Расчет магнитной цепи при нагрузке
7. Обмотка возбуждения
8. Параметры обмоток и постоянные времени. Сопротивления обмоток статора при установившемся режиме
8.1 Сопротивления обмоток статора при установившемся режиме
8.2 Сопротивление обмотки возбуждения
8.3 Переходные и сверхпереходные сопротивления обмотки статора
8.4 Сопротивления для токов обратной и нулевой последовательности
8.5 Постоянные времени обмоток
9. Потери и КПД
10. Характеристики машин
10.1 Отношение короткого замыкания
11. Тепловой расчет синхронной машины
11.1 Обмотка статора
11.2 Обмотка возбуждения
11.3 Вентиляционный расчет
12. Масса и динамический момент инерции
12.1 Масса
12.2 Динамический момент инерции ротора
13. Механический расчет вала
Литература

Файлы: 1 файл

kazedu_137887.docx

— 128.43 Кб (Скачать файл)

Синхронный генератор

Аннотация

Синхронные машины применяются во многих отраслях народного хозяйства, в частности, в качестве генераторов в передвижных и стационарных электрических станциях, двигателей в установках не требующих регулирования частоты вращения или нуждающихся в постоянной частоте вращения.

Наиболее распространена конструктивная схема синхронной машины с вращающимся ротором, на котором расположены явновыраженные полюсы. Иногда явнополюсные синхронные машины малой мощности выполняют по конструктивной схеме машин постоянного тока, то есть с полюсами, расположенными на статоре, коллектор заменяется контактными кольцами.

Синхронные двигатели серии СД2 и генераторы серии СГ2 изготавливают мощностью от 132 до 1000 кВт, при высоты оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.

Электрические машины серий СД2 и СГ2 рассчитаны на продолжительный режим работы. Их возбуждение осуществляется от устройства, питающегося от дополнительной обмотки, заложенной в пазы статора.

 

Содержание

Введение

1. Исходные данные

2. Магнитная цепь  двигателя. Размеры, конфигурация, материал

2.1 Конфигурация

2.2 Главные размеры

2.3 Сердечник статора

2.4 Сердечник ротора

2.5 Сердечник полюса  и полюсный наконечник

3. Обмотка статора

4. Расчет магнитной  цепи

4.1 Воздушный зазор

4.2 Зубцы статора

4.3 Спинка статора

44 Полюсы

4.5 Спинка ротора

4.6 Воздушный зазор  в стыке полюса

4.7 Общие параметры  магнитной цепи

5. Активное и  индуктивное сопротивление обмотки  статора для установившегося  режима

6. Расчет магнитной  цепи при нагрузке

7. Обмотка возбуждения

8. Параметры обмоток  и постоянные времени. Сопротивления  обмоток статора при установившемся  режиме

8.1 Сопротивления  обмоток статора при установившемся  режиме

8.2 Сопротивление  обмотки возбуждения

8.3 Переходные и  сверхпереходные сопротивления  обмотки статора

8.4 Сопротивления  для токов обратной и нулевой  последовательности

8.5 Постоянные времени  обмоток

9. Потери и КПД

10. Характеристики  машин

10.1 Отношение короткого  замыкания

11. Тепловой расчет  синхронной машины

11.1 Обмотка статора

11.2 Обмотка возбуждения

11.3 Вентиляционный  расчет

12. Масса и динамический  момент инерции

12.1 Масса

12.2 Динамический  момент инерции ротора

13. Механический  расчет вала

Литература

 

Введение 

 

Синхронные генераторы применяются в передвижных и стационарных электрических станциях. Наиболее распространена конструктивная схема генераторов с вращающимся ротором, на котором расположены явновыраженные полюса. Генераторы серии СГ2 изготавливаются мощностью от132 до 1000 кВт при высоте оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.

В журнале “Электричество” №8 2004г. ученым Ороняным Р. В. предложен метод, позволяющий с достаточной для инженерных расчетов точностью вычислять значение экстремальных отклонений напряжений автономного синхронного генератора при сбросе - набросе нагрузки. Зная экстремальные изменения напряжения, можно с помощью полученных в статье формул рассчитать значение индуктивных сопротивлений по поперечной оси генератора хq и x’q..

В журнале “Электричество” №10 2004г. ученым Джендубаевым А.-З.Р представлена математическая модель позволяющая исследовать динамические и статические режимы асинхронного генератора с учетом потерь в стали статора и фазного ротора. В широком диапазоне изменения скольжения учет потерь а стали фазного ротора повышает точность расчета.

В обзоре докладов 23 сессии СИГРЭ (1970) рассматривается актуальные вопросы создания и работы синхронных генераторов большой мощности и их систем возбуждения.

В книге Абрамова А. И. “Синхронные генераторы” рассмотрены основные свойства и поведение синхронных генераторов при различных режимах работы, возникающих во время эксплуатации. Даны требования к системам возбуждения и показана необходимость введения форсировки возбуждения не всех синхронных машинах в целях повышения устойчивости работы энергосистемы. Рассмотрены вопросы нагрева обмоток при установившихся режимах и при форсировках возбуждения. Подробно рассмотрен асинхронный режим работы генераторов включая вопросы асинхронного пуска, даны методы расчета и приведены опытные данные.

 

1. Исходные данные

Данные для проектирования

Назначение

Генератор

Номинальный режим работы

Продолжительный

Номинальная отдаваемая мощность Р2, кВт

30

Количество фаз статора m1

3

Способ соединения фаз статора

Y

Частота напряжения f, Гц

50

Коэффициент мощности cos φ

0,8

Номинальное линейное напряжение Uл, В

400

Частота вращения n1, об/мин

1500

Способ возбуждения

От спец. обмотки

Степень защиты от внешних воздействий

IP23

Способ охлаждения

IC01


 

2. Магнитная цепь  машины. Размеры, конфигурация, материалы

2.1 Конфигурация

Принимаем изоляцию класса нагревостойкости F

Количество пар полюсов (9/1)

р=60f/n1=60∙50/1500=2

Индуктивное сопротивление рассеяния обмотки статора (рисунок 11.1)

хσ*=0,08 о.е.

Коэффициент мощности нагрузки (11.1)

кн=

Предварительное значение КПД (рисунок 11.2)

η'=0,88 о.е.

2.2 Главные размеры

Расчетная мощность (1.11)

Р'=кнР2/cosφ=1.05∙30/0,8=39.4 кВт.

Высота оси вращения (таблица 11.1)

h=225 мм.

Допустимое расстояние от корпуса до опорной поверхности (таблица 9.2)

h1=7 мм.

Наружный диаметр корпуса (1.27)

 

Dкорп=2(h-h1)=2(225-7)=436 мм.

Максимально допустимый наружный диаметр сердечника статора (таблица 9.2)

Dн1max=406 мм.

Выбираемый диаметр сердечника статора (§ 11.3)

Dн1=406 мм.

Внутренний диаметр сердечника статора (§ 11.3)

D1=6+0,69·Dн1=6+0,69∙406=286 м.

Предварительное значение линейной нагрузки статора (рис. 11.3)

А'1=220 А/см.

Предварительное значение магнитной индукции в воздушном зазоре и номинальном режиме (рисунок 11.4)

В'б=0,77 Тл.

Предварительное значение максимальной магнитной индукции в воздушном зазоре машины при х.х. (11.3)

В'б0=В'б/кн=0,77/1,05=0,73 Тл.

Полюсное деление статора (1.5)

 мм.

Индуктивное сопротивление машины по продольной оси (рис. 11.5)

хd*=2.5 о.е.

Индуктивное сопротивление реакции якоря по продольной оси (11.4)

хad*=хd* - хσ*=2,5-0,08=2,42 о.е.

Коэффициент, учитывающий наличие зазоров в стыке полюса и сердечника ротора или полюсного наконечника и полюса (§ 11.3)

к'=1,07

Расчетная величина воздушного зазора между полюсным наконечником и сердечником статора (11.2)

 мм.

Уточненная величина воздушного зазора (§ 11.3)

б=1 мм.

Форма зазора концентричная по рисунку 11.8

Коэффициент полюсной дуги для пакетов с широкими полюсными наконечниками

аш=0,77 (§ 11-3)

Радиус очертания полюсного наконечника

Действительная ширина полюсной дуги в сечении пакета с широкими полюсными наконечниками

Ширина полюсного наконечника, определяемая хордой в сечении пакета с широкими полюсными наконечниками

 

Отношение b’Y/b’ш

b’Y/b’ш=0.48

Ширина полюсного наконечника, определяемая хордой в сечении пакета с узкими полюсными наконечниками

Действительная ширина полюсной дуги в сечении пакета с узкими полюсными наконечниками

Действительный коэффициент полюсной дуги для пакетов с узкими полюсными наконечниками

Коэффициент полюсной дуги : средний и расчетный

2.3 Сердечник статора

Марка стали 2013, изолировка листов оксидированием, толщина стали 0,5 мм.

Коэффициент заполнения сердечника статора сталью (§ 9.3)

кс=0,97.

Коэффициент формы поля возбуждения (рисунок 11.9)

кв=1,17.

Обмоточный коэффициент (§ 9.3)

коб1=0,91

Расчетная длина сердечника статора (1.31)

.

Конструктивная длина сердечника статора (1.33)

ℓ1=ℓ'=160 мм.

Отношение конструктивной длины к внутреннему диаметру сердечника статора

λ=ℓ1/D1=160/286=0,56.

Проверка по условию λ< λmax (рисунок 11.10)

λmax=1,07.

Количество пазов на полюс и фазу (§ 11.3)

q1=3,5.

Количество пазов сердечника статора (9.3)

z1=2рm1q1=4∙3∙3,5=42.

Проверка правильности выбора значения z1 (11.15)

z1/gm1=42/(2∙3)=7 - целое число.

 

2.4 Сердечник ротора

Марка стали 2013, толщина листов 0,5 мм, листы без изоляции, коэффициент заполнения стали кс=0,97.

Длина сердечника ротора (11.20)

ℓ2=ℓ1+(10..20)=160+10=170 мм.

2.5 Сердечник полюса  и полюсный наконечник

Марка стали 2013 У8А, толщина листов 0,5 мм, листы без изоляции, коэффициент заполнения кс=0,97

Длина шихтованного сердечника полюса (11.19)

ℓп=ℓ1+(10..15)=160+10=170 мм.

Суммарная длина пакетов с широкими полюсными наконечниками

Количество пакетов сердечника полюса соответственно с широкими, узкими и крайними полюсными наконечниками

Магнитная индукция в основании сердечника полюса (§ 11.3)

В'п=1,45 Тл.

Предварительное значение магнитного потока (9.14)

Ф'=В'бD1ℓ'110-6/р=0,77∙286∙160∙10-6/2=17,6∙10-3 Вб.

Ширина дуги полюсного наконечника (11.25)

bн.п=ατ=,0.77∙224,5=173 мм

Ширина полюсного наконечника (11.28)

b'н.п=2Rн.пsin(0.5bн.п/Rн.п)= 2∙142∙sin(0,5∙173/142)=162,49 мм.

Высота полюсного наконечника (§ 11.3)

h'н.п=3 мм.

Высота полюсного наконечника по оси полюса для машин с эксцентричным зазором (11.29)

Поправочный коэффициент (11.24)

кσ=1,25hн.п+25=1,25*28+25=60

Предварительное значение коэффициента магнитного рассеяния полюсов (11.22)

σ'=1+кσ35б/τ2=1+60∙35*1/224,5=1,04

Ширина сердечника полюса (11.21)

bп=σ'Ф'∙106/(ксℓпВ'п)=1,04∙17,6∙10-3∙106/(0,97∙170∙1,45)=78 мм.

Высота выступа у основания сердечника (11.32)

h'п=0.5D1-( hн.п+ б +hB+0.5bп)=0,5*286-(28+1+12+0,5*78)=63 мм.

Предварительный внутренний диаметр сердечника ротора (11.33)

D'2=dв=кв  мм.

Высота спинки ротора (11.34)

 

hс2=0,5D1-б-h'п-0,5D'2=0,5∙286-1-63-28-0,5∙72=13 мм.

Расчетная высота спинки ротора с учетом прохождения части магнитного потока по валу (11.35)

h'с2=hс2+0,5D'2=13+0,5∙72=49 мм.

Магнитная индукция в спинке ротора (11.36)

Вс2=  Тл.

 

3. Обмотка статора

Принимаем двухслойную петлевую обмотку из провода ПЭТ-155, класс нагревостойкости F, укладываемую в трапецеидальные полузакрытые пазы.

Коэффициент распределения (9.9)

кр1= ;

где α=60/q1.

Укорочение шага (§ 9.3)

β'1=0,8

Шаг обмотки (9.11)

уп1=β1z1/(2p)=0,8∙42/(2∙2)=8,4;

Принимаем уп1=8.

Укорочение шага обмотки статора по пазам (11.37)

β1=2руп1/z1=2∙3∙8/42=0,762.

Коэффициент укорочения (9.12)

ку1=sin(β1∙90˚)=sin(0,762∙90)=0,93.

Обмоточный коэффициент (9.13)

коб1=кр1∙ку1=0,961∙0,93=0,91.

 

Предварительное количество витков в обмотке фазы (9.15)

w'1= .

Количество параллельных ветвей обмотки статора (§ 9.3)

а1=1

Предварительное количество эффективных проводников в пазу (9.16)

N'п1= ;

Принимаем N'п1=10.

Уточненное количество витков (9.17)

.

Количество эффективных проводников в пазу (§ 11.4)

Nд=2

Количество параллельных ветвей фазы дополнительной обмотки

ад=2.

Количество витков дополнительной обмотки статора (11.38)

.

Уточненное значение магнитного потока (9.18)

Ф=Ф'(w'1/w1)= 17,6∙10-3 (69,7/70)= 17,5∙10-3 Вб.

 

Уточненное значение индукции в воздушном зазоре (9.19)

Вб=В'б(w'1/w1)=0,77∙(69,7/70)=0,767Тл.

Предварительное значение номинального фазного тока (9.20)

 А.

Уточненная линейная нагрузка статора (9.21)

.

Среднее значение магнитной индукции в спинке статора (9.13)

Вс1=1,6 Тл.

Обмотка статора с трапецеидальными полуоткрытыми пазами (таблица 9.16)

В'з1max=1,9∙0,95=1,8 Тл.

Зубцовое деление по внутреннему диаметру статора (9.22)

t1=πD1/z1=3.14∙286/42=21,4 мм.

Предельная ширина зубца в наиболее узком месте (9.47)

b'з1min=  мм.

Предварительная ширина полуоткрытого паза в штампе (9.48)

 

b'п1=t1min-b'з1min=23.37-10.56=12.8 мм.

Высота спинки статора (9.24)

hc1=  мм.

Высота паза (9.25)

hn1=(Dн1-D1)/2-hc1=(406-286)/2-35=25 мм.

Высота шлица (§ 9.4)

hш=0,5 мм.

Большая ширина паза

.

Меньшая ширина паза

Проверка правильности определения ширины паза

Площадь поперечного сечения паза в штампе

 

Площадь поперечного сечения паза в свету

Площадь поперечного сечения корпусной изоляции

Площадь поперечного сечения прокладок между верхними нижними катушками в пазу

Площадь поперечного сечения паза

Площадь поперечного сечения паза для размещения основной обмотки

Количество элементарных проводов в эффективном (§ 9.4)

с=6

Размеры провода (приложение 1)

d / d’=1,4/1.485;

S=1,539 мм2.

Коэффициент заполнения паза

 

Среднее зубцовое деление статора (9.40)

tср1=π(D1+hп1)/z1=3,14(286+25)/42=23,3

Средняя ширина катушки обмотки статора (9.41)

bср1=tср1уп1=23,3∙8=186,4.

Средняя длина одной лобовой части обмотки (9.60)

ℓл1=(1,16+0,14*р)bср1+15=(1,16+0,14*2)*186,4+15=284 мм.

Средняя длина витка обмотки (9.43)

ℓср1=2(ℓ1+ℓл1)=2(284+160)=890 мм.

Длина вылета лобовой части обмотки (9.63)

ℓв1=(0,12+0,15р)bср1+10=(0,12+0,15*2)186,4+10=88 мм.

Плотность тока в обмотке статора (9.39)

J1=I1/(S∙c∙a1)=54.1/(6*1,5539)=5,86 А/мм2.

Определяем значение А1J1 (§11.4)

А1J1=253∙5,86=1483 А2/см∙мм2.

Допустимое значение А1J1 (рисунок 11.12)

(А1J1)доп=2150 > 1483 А2/см∙мм2.

 

4. Расчет магнитной  цепи

4.1 Воздушный зазор

Расчетная площадь поперечного сечения воздушного зазора (11.60)

Sб=α'τ(ℓ'1+2б)=0,66∙224,5(160+2∙1)=24000 мм2.

Уточненное значение магнитной индукции в воздушном зазоре (11.61)

Вб=Ф∙106/Sб=17,5∙103/24000=0,73Тл.

Коэффициент, учитывающий увеличение магнитного зазора, вследствие зубчатого строения статора

Информация о работе Синхронный генератор