Гемодинамика

Автор работы: Пользователь скрыл имя, 01 Декабря 2015 в 15:42, реферат

Описание работы

Гемодинамика — движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого). Зависит от сопротивления току крови стенок сосудов и вязкости самой крови. О гемодинамике судят по минутному объёму крови.

Содержание работы

1. Основные закономерности гемодинамики стр.4
1.1 Равенство объёмов кровотока стр.4
1.2 Движущая сила кровотока стр.4
1.3 Сопротивление в кровеносной системе стр.4
2. Функциональная классификация сосудов стр.7
2.1 Амортизирующие сосуды стр.7
2.2 Сосуды распределения стр.7
2.3 Сосуды сопротивления стр.7
2.4 Обменные сосуды (капилляры) стр.8
2.5 Шунтирующие сосуды стр.8
2.6 Емкостные (аккумулирующие) сосуды стр.9
2.7 Сосуды возврата крови в сердце стр.10
3. Основные параметры сердечно-сосудистой системы стр.10
3.1 Поперечное сечение сосудов стр.10
3.2 Объём крови в кровеносной системе стр.11
3.3 Объёмная скорость кровотока стр.11
3.4 Линейная скорость кровотока стр.12
4. Движение крови по артериям стр.13
4.1 Энергия, обеспечивающая движение крови по сосудам стр.13
4.2 Характеристика артериального давления крови стр.14
4.3 Методы измерения кровяного давления стр.14
4.4 Скорость распространения пульсовой волны стр.15
4.5 Артериальный пульс стр.15
5. Микроциркуляция стр.16
5.1 Транскапиллярный обмен веществ стр.16
5.2 Скорость кровотока стр.18
6. Движение крови по венам стр.19
6.1 Давление крови в венах стр.19
6.2 Причины движения крови по венам стр.19
6.3 Линейная скорость кровотока стр.21
7. Особенности кровотока в органах стр.21
7.1 Лёгкие стр.21
7.2 Коронарные сосуды стр.22
7.3 Головной мозг стр.23
8. Литература стр.25

Файлы: 1 файл

гемодинамика.docx

— 138.47 Кб (Скачать файл)

 

 

 

 

 

Скорость распространения пульсовой волны

Определение СРПВ

Повышение артериального давления во время систолы сопровождается растяжением эластических стенок сосудов — пульсовыми колебаниями поперечного сечения или объема. Пульсовые колебания давления и объема распространяются с гораздо большей скоростью, чем скорость кровотока. Скорость распространения пульсовой волны зависит от растяжимости сосудистой стенки и отношения толщины стенки к радиусу сосуда, поэтому данный показатель используют для характеристики упруго-эластических свойств и тонуса сосудистой стенки. При снижении растяжимости стенки с возрастом (атеросклероз) и при повышении тонуса мышечной оболочки сосуда скорость распространения пульсовой волны увеличивается. В норме у взрослых людей скорость распространения пульсовой волны в сосудах эластического типа равна 5—8 м/с, в сосудах мышечного типа — 6—10 м/с.

Для определения скорости распространения пульсовой волны одновременно регистрируют две сфигмограммы (кривых пульса): один датчик пульса устанавливают над проксимальным, а другой — над дистальным отделами сосуда. Так как для распространения волны по участку сосуда между датчиками требуется время, то его и рассчитывают по запаздыванию волны дистального участка сосуда относительно волны проксимального. Определив расстояние между двумя датчиками, можно рассчитать скорость распространения пульсовой волны.

 

Артериальный пульс

Доступен для пальпаторного исследования (прощупывания) в местах, где артерия располагается близко к поверхности кожи, а под ней находится костная ткань. По артериальному пульсу можно получить предварительное представление о функциональном состоянии сердечно-сосудистой системы. Так, частота пульса характеризует частоту сокращений сердца. Редкий пульс (менее 60/мин) соответствует брадикардии, частый (более 90/мин) — тахикардии. Ритм пульса (пульс ритмичный, аритмичный) даёт представление о водителях ритма сердца. В норме чаще выявляется «дыхательная аритмия» сердца; другие виды аритмий (экстрасистолия, мерцательная аритмия) более точно определяются с помощью ЭКГ. В клинической практике оценивают также высоту, скорость, напряжение пульса и его симметричность на обеих руках (ногах). На кривой регистрации пульса — сфигмограмме - отражаются повышение давления в артериях во время систолы желудочка (анакрота), снижение давления при расслаблении желудочков (катакрота) и небольшое увеличение давления под влиянием отражённого удара гидравлической волны о замкнутый полулунный клапан — дикротический подъём (дикрота).

 

Микроциркуляция

Микроциркуляторное русло

В микроциркуляторном русле осуществляется транспорт веществ через стенку капилляров, в результате чего клетки органов и тканей обмениваются с кровью теплом, водой и другими веществами, образуется лимфа.

 

Транскапиллярный обмен веществ

Происходит путём диффузии, облегчённой диффузии, фильтрации, осмоса и трансцитоза. Интенсивность всех этих процессов, разных по физико-химической природе, зависит от объёма кровотока в системе микроциркуляции (величина его может возрастать за счёт увеличения количества функционирующих капилляров, т.е. площади обмена, и линейной скорости кровотока), а также определяется проницаемостью обменной поверхности.

Обменная поверхность капилляров гетерогенна по своему строению: она состоит из чередующихся белковой, липидной и водной фаз. Липидная фаза представлена почти всей поверхностью эндотелиальной клетки, белковая — переносчиками и ионными каналами, водная — межэндотелиальными порами и каналами, имеющими разный диаметр, а также фенестрами (окнами) эндотелиоцитов. Эффективный радиус водных пор и каналов определяет размер водорастворимых молекул, которые могут проходить через них свободно, ограничено или вообще не проходить, т.е. проницаемость капилляров для разных веществ неодинакова.

Свободно диффундирующие вещества быстро переходят в ткани, и диффузионное равновесие между кровью и тканевой жидкостью достигается уже в начальной (артериальной) половине капилляра. Для ограниченно диффундирующих веществ требуется большее время установления диффузионного равновесия, и оно либо достигается на венозном конце капилляра, или не устанавливается вообще. Поэтому для веществ, транспортируемых только диффузией, имеет большое значение линейная скорость капиллярного кровотока. Если скорость транскапиллярного транспорта веществ (чаще — диффузии) меньше, чем скорость кровотока, то вещество может выноситься с кровью из капилляра, не успев вступить в диффузионное равновесие с жидкостью межклеточных пространств. При определённой величине скорости кровоток может лимитировать количество перешедшего в ткани или, наоборот, выводимого из тканей вещества. Поток свободно диффундирующих веществ в основном зависит от площади поверхности обмена, т.е. от количества функционирующих капилляров, поэтому транспорт свободно диффундирующих веществ может ограничиваться при снижении объемной скорости кровотока.

Та часть объема кровотока, из которой в процессе транскапиллярного перехода извлекаются вещества, называется нутритивным кровотоком, остальной объём — шунтовым кровотоком (объем функционального шунтирования).

Для характеристики гидравлической проводимости капилляров используют коэффициент капиллярной фильтрации. Его выражают количеством миллилитров жидкости, которое фильтруется в течение 1 мин в 100 г ткани в расчете на 1 мм рт.ст. фильтрационного давления.

Обмен жидкости через стенку капилляра. Стрелками обозначены направления движения жидкости и изменения величины движущей силы по ходу капилляра. ФД — фильтрационное давление, РД — реабсорбционное давление

Фильтрационное давление (ФД) обеспечивает фильтрацию жидкости в артериальном конце капилляра, в результате чего она перемещается из капилляров в интерстициальное пространство. ФД является результатом взаимодействия разнонаправленных сил: способствуют фильтрации гидростатическое давление крови (ГДк = 30 мм рт.ст.) и онкотическое давление тканевой жидкости (ОДт = 5 мм рт.ст.). Препятствует фильтрации онкотическое давление плазмы крови (ОДк = 25 мм рт.ст.). Гидростатическое давление в интерстиции колеблется около нуля (т.е. оно несколько ниже или выше атмосферного), поэтому ФД равно:

ФД = ГДк + ОДт - ОДк = 30 + 5 - 25 = 10 (мм рт. ст.)

По мере продвижения крови по капилляру ГДк снижается до 15 мм рт.ст., поэтому силы, способствующие фильтрации, становятся меньше сил, противодействующих фильтрации. Таким образом, формируется реабсорбционное давление (РД), обеспечивающее перемещение жидкости в венозном конце из интерстиция в капилляры.

РД = ОДк - ГДк - ОДт = 25 - 15 - 5 = 5 (мм рт.ст.)

Соотношение и направления сил, обеспечивающих фильтрацию и реабсорбцию жидкости в капиллярах, показаны на рисунке.

Таким образом, фильтрационное давление больше, чем реабсорбционное, но поскольку проницаемость для воды венозной части микроциркуляторного русла выше проницаемости артериального конца капилляра, то количество фильтрата лишь незначительно превышает количество реабсорбируемой жидкости; излишек воды из тканей удаляется через лимфатическую систему.

Согласно классической теории Старлинга, между объемом жидкости, фильтрующейся в артериальном конце капилляра, и объёмом жидкости, реабсорбируемой в венозном конце (и удаляемой лимфатическими сосудами), в норме существует динамическое равновесие. Если оно нарушается, происходит перераспределение воды между сосудистым и межклеточным секторами. В случае накопления воды в интерстиции возникает отёк и жидкость начинает интенсивнее дренироваться терминальными лимфатическими сосудами. Регуляция всех механизмов массопереноса через стенку капилляров осуществляется путём изменений количества функционирующих капилляров и их проницаемости. В покое во многих тканях функционирует лишь 25—30 % капилляров от их общего количества, при деятельном состоянии их число возрастает, например, в скелетных мышцах до 50—60 %. Проницаемость сосудистой стенки увеличивается под влиянием гистамина, серотонина, брадикинина, по-видимому, вследствие трансформации малых пор в большие. В случае, когда промежутки между эндотелиальными клетками заполнены компонентами соединительной ткани, действие гуморальных факторов может проявляться в сдвигах стерического (под стерическим подразумевается взаимодействие, связанное с наличием у молекул размера и формы, что накладывает жёсткие ограничения на способы их размещения в пространстве) ограничения межклеточного матрикса для перемещения молекул. С таким влиянием связывают увеличение проницаемости под влиянием гиалуронидазы и снижение — при действии ионов кальция, витаминов Р, С, катехоламинов.

 

Скорость кровотока

В отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге — 0,3—1 с.

 

Движение крови по венам

Венозная система принципиально отличается от артериальной.

 

Давление крови в венах

Значительно ниже, чем в артериях, и может быть ниже атмосферного (в венах, расположенных в грудной полости, — во время вдоха; в венах черепа — при вертикальном положении тела); венозные сосуды имеют более тонкие стенки, и при физиологических изменениях внутрисосудистого давления меняется их ёмкость (особенно в начальном отделе венозной системы), во многих венах имеются клапаны, препятствующие обратному току крови. Давление в посткапиллярных венулах равно 10—20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до —5 мм рт.ст. — следовательно, движущая сила (ΔР) составляет в венах около 10—20 мм рт.ст., что в 5—10 раз меньше движущей силы в артериальном русле. При кашле и натуживании центральное венозное давление может возрастать до 100 мм рт.ст., что препятствует движению венозной крови с периферии. Давление в других крупных венах также имеет пульсирующий характер, но волны давления распространяются по ним ретроградно — от устья полых вен к периферии. Причиной появления этих волн являются сокращения правого предсердия и правого желудочка. Амплитуда волн по мере удаления от сердца уменьшается. Скорость распространения волны давления составляет 0,5—3,0 м/с. Измерение давления и объёма крови в венах, расположенных вблизи сердца, у человека чаще проводят с помощью флебографии яремной вены. На флебограмме выделяют несколько последовательных волн давления и кровотока, возникающих в результате затруднения притока крови к сердцу из полых вен во время систолы правых предсердия и желудочка. Флебография используется в диагностике, например, при недостаточности трехстворчатого клапана, а также при расчетах величины давления крови в малом круге кровообращения.

 

Причины движения крови по венам

Основная движущая сила — разность давлений в начальном и конечном отделах вен, создаваемой работой сердца. Имеется ряд вспомогательных факторов, влияющих на возврат венозной крови к сердцу.

1. Перемещение тела и его частей в гравитационном поле

В растяжимой венозной системе большое влияние на возврат венозной крови к сердцу оказывает гидростатический фактор. Так, в венах, расположенных ниже сердца, гидростатическое давление столба крови суммируется с давлением крови, создаваемым сердцем. В таких венах давление возрастает, а в расположенных выше сердца — падает пропорционально расстоянию от сердца. У лежащего человека давление в венах на уровне стопы равно примерно 5 мм рт.ст. Если человека перевести в вертикальное положение с помощью поворотного стола, то давление в венах стопы повысится до 90 мм рт.ст. При этом венозные клапаны предотвращают обратный ток крови, но венозная система постепенно наполняется кровью за счёт притока из артериального русла, где давление в вертикальном положении возрастает на ту же величину. Ёмкость венозной системы при этом увеличивается из-за растягивающего действия гидростатического фактора, и в венах дополнительно накапливается 400—600 мл притекающей из микрососудов крови; соответственно на эту же величину снижается венозный возврат к сердцу. Одновременно в венах, расположенных выше уровня сердца, венозное давление уменьшается на величину гидростатического давления и может стать ниже атмосферного. Так, в венах черепа оно ниже атмосферного на 10 мм рт.ст., но вены не спадаются, так как фиксированы к костям черепа. В венах лица и шеи давление равно нулю, и вены находятся в спавшемся состоянии. Отток осуществляется через многочисленные анастомозы системы наружной яремной вены с другими венозными сплетениями головы. В верхней полой вене и устье яремных вен давление в положении стоя равно нулю, но вены не спадаются из-за отрицательного давления в грудной полости. Аналогичные изменения гидростатического давления, венозной ёмкости и скорости кровотока происходят также при изменениях положения (поднимании и опускании) руки относительно сердца.

2. Мышечный насос и венозные клапаны

При сокращении мышц сдавливаются вены, проходящие в их толще. При этом кровь выдавливается по направлению к сердцу (обратному току препятствуют венозные клапаны). При каждом мышечном сокращении кровоток ускоряется, объём крови в венах уменьшается, а давление крови в венах снижается. Например, в венах стопы при ходьбе давление равно 15—30 мм рт.ст., а у стоящего человека — 90 мм рт.ст. Мышечный насос уменьшает фильтрационное давление и предупреждает накопление жидкости в интерстициальном пространстве тканей ног. У людей, стоящих длительное время, гидростатическое давление в венах нижних конечностей обычно выше, и эти сосуды растянуты сильнее, чем у тех, кто попеременно напрягает мышцы голени, как при ходьбе, для профилактики венозного застоя. При неполноценности венозных клапанов сокращения мышц голени не столь эффективны. Мышечный насос усиливает также отток лимфы по лимфатической системе.

3. Движению крови по венам к сердцу

способствует также пульсация артерий, ведущая к ритмичному сдавлению вен. Наличие клапанного аппарата в венах предотвращает обратный ток крови в венах при их сдавливании.

4. Дыхательный насос

Во время вдоха давление в грудной клетке уменьшается, внутригрудные вены расширяются, давление в них снижается до —5 мм рт.ст., происходит засасывание крови, что способствует возврату крови к сердцу, особенно по верхней полой вене. Улучшению возврата крови по нижней полой вене способствует одновременное небольшое увеличение внутрибрюшного давления, увеличивающее локальный градиент давления. Однако во время выдоха приток крови по венам к сердцу, напротив, уменьшается, что нивелирует возрастающий эффект.

5. Присасывающее действие сердца

способствует кровотоку в полых венах в систоле (фаза изгнания) и в фазе быстрого наполнения. Во время периода изгнания атриовентрикулярная перегородка смещается вниз, увеличивая объём предсердий, вследствие чего давление в правом предсердии и прилегающих отделах полых вен снижается. Кровоток увеличивается из-за возросшей разницы давления (присасывающий эффект атриовентрикулярной перегородки). В момент открытия атриовентрикулярных клапанов давление в полых венах снижается, и кровоток по ним в начальном периоде диастолы желудочков возрастает в результате быстрого поступления крови из правого предсердия и полых вен в правый желудочек (присасывающий эффект диастолы желудочков). Эти два пика венозного кровотока можно наблюдать на кривой объёмной скорости кровотока верхней и нижней полых вен.

 

Линейная скорость кровотока

В венах,как и в других отделах сосудистого русла, зависит от суммарной площади поперечного сечения, поэтому она наименьшая в венулах (0,3—1,0 см/с), наибольшая — в полых венах (10—25 см/с). Течение крови в венах ламинарное, но в месте впадения двух вен в одну возникают вихревые потоки, перемешивающие кровь, её состав становится однородным.

Информация о работе Гемодинамика