Физика нефтяного пласта

Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 10:37, лекция

Описание работы

Нефть стала известна людям более четырёх тысяч лет тому назад.
На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле ("греческий огонь"), а также для освещения комнат и смазки колёс.

Файлы: 1 файл

Лекции - Физика нефтяного пласта.doc

— 752.50 Кб (Скачать файл)

Экспериментально изучался поток при одновременном содержании в пористой среде нефти, воды и газа. Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно-, двух- и трёхфазное движение. Результаты исследования представлены в виде треугольной диаграммы (рис. 1.11).

Вершины треугольника соответствуют  стопроцентному насыщению породы одной  из фаз; стороны, противолежащие вершинам, – нулевому насыщению породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно-, двух-, и трёхфазного потока.

 

Рис. 1.11. Области  распространения одно-, двух- и трёхфазного  потоков:

1. – 5% воды; 2. – 5% нефти; 3. – 5% газа.

 

 

 

 

2. МЕХАНИЧЕСКИЕ  И ТЕПЛОВЫЕ  СВОЙСТВА ПОРОД

 

2.1. МЕХАНИЧЕСКИЕ  СВОЙСТВА ГОРНЫХ ПОРОД

 

Упругость, прочность  на сжатие и разрыв, пластичность –  наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений.

Упругие свойства горных пород и влияют на перераспределения давления в пласте в процессе эксплуатации месторождения. Давление в пласте, благодаря упругим свойствам пород, перераспределяется не мгновенно, а постепенно после изменения режима работы скважины.

Упругость – свойство горных пород сопротивляться изменению их объёма и формы под действием приложенных сил. Абсолютно упругое тело восстанавливает первоначальную форму мгновенно после снятия напряжения. Если тело не восстанавливает первоначальную форму или восстанавливает её в течение длительного времени, то оно называется пластичным.

 

2.2. ТЕПЛОВЫЕ  СВОЙСТВА ГОРНЫХ ПОРОД

 

Тепловые свойства горных пород характеризуются удельной теплоёмкостью, коэффициентом температуропроводности и коэффициентом теплопроводности.

Удельная (массовая) теплоёмкость характеризуется количеством теплоты, необходимым для нагрева единицы массы породы на 1°С:

 

.  (2.1)

 

Этот параметр необходимо учитывать при тепловом воздействии  на пласт.

Коэффициент теплопроводности (удельного теплового сопротивления) l характеризует количество теплоты dQ, переносимой в породе через единицу площади S в единицу времени t при градиенте температуры dT/dx:

 

.  (2.2)

 

Коэффициент температуропроводности характеризует скорость прогрева пород (или скорость распространения изотермических границ):

 

.  (2.3)

 

Коэффициенты линейного (aL) и объёмного (aV) расширения характеризуют изменение размеров породы при нагревании:

.  (2.4)

 

Теплоёмкость пород зависит от минералогического состава пород и не зависит от строения и структуры минералов. Удельная теплоёмкость увеличивается при уменьшении плотности породы и растёт с увеличение температуры и влажности в пределах 0,4-2 кДж/(кг×К).

Теплопроводность и  температуропроводность пород очень низки по сравнению с металлами. Поэтому для прогрева призабойных зон требуется очень большая мощность нагревателей. Вдоль напластования теплопроводность выше, чем поперёк напластования на 10-50%.

Коэффициенты линейного  и объёмного расширения изменяются в зависимости от плотности породы аналогично теплоёмкости. Наибольшим значением коэффициентов расширения обладает кварцевый песок и другие крупнозернистые породы.

Коэффициент линейного  расширения пород уменьшается с  ростом плотности минералов.

 

Тепловых свойства некоторых горных пород и пластовых флюидов

Таблица 2.1.

Горная порода

с, кДж/(кг×К)

l, Вт/(м×К)

a×103, м2

aL×105, 1/К

глина

0,755

0,99

0,97

глинистые сланцы

0,772

154-218

0,97

0,9

доломит

0,93

1,1-4,98

0,86

известняк

1,1

2,18

0,91

0,5-0,89

кварц

0,692

2,49

1,36

1,36

песок

0,8

0,347

0,2

0,5

Пластовые флюиды

с, кДж/(кг×К)

l, Вт/(м×К)

a×103, м2

aL×105, 1/К

нефть

2,1

0,139

0,069-0,086

вода

4,15

0,582

0,14


 

 

3. СОСТАВ И ФИЗИЧЕСКИЕ  СВОЙСТВА ГАЗА, НЕФТИ И ПЛАСТОВЫХ ВОД

 

3.1. СОСТАВ И  ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА  ПРИРОДНЫХ  ГАЗОВ

 

Природные газы – это  вещества, которые при нормальных условиях находятся в газообразном состоянии.

Углеводородные газы, в зависимости от их состава, давления и температуры могут находиться в залежи в различных состояниях – газообразном, жидком или в виде газожидкостных смесей. Газ обычно расположен в газовой шапке в повышенной части пласта.

Если газовая шапка  в нефтяной залежи отсутствует (это  возможно при высоком пластовом  давлении или особом строении залежи), то весь газ залежи растворён в нефти. Этот газ будет, по мере снижения давления, выделятся из нефти при разработке месторождения и будет называться попутным газом.

В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше растворённого газа в нефти.

Давление, при котором  весь имеющийся в залежи газ растворён  в нефти, называется давлением насыщения. Оно определяется составом нефти и газа и температурой в пласте.

От давления насыщения  зависит газовый фактор – количество газа (в м3), содержащееся в 1 тонне нефти.

Газы могут находиться в пласте в трёх состояниях: свободном, сорбированном, растворённом.

 

3.1.1. Состав  природных газов

 

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородных компонентов (СН4 – С22Н46), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).

При нормальных и стандартных  условиях в газообразном состоянии  существуют только углеводороды С1–С4. Углеводороды С5 и выше в нормальных условиях находятся в жидком состоянии.

Газы, добываемые из чисто  газовых месторождений, содержат более 95% метана (табл. 3.1).

 

Химический состав газа газовых  месторождений, об. %

Таблица 3.1

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Северо-Ставропольское

98,9

0,29

0,16

0,05

0,4

0,2

0,56

Уренгойское

98,84

0,1

0,03

0,02

0,01

1,7

0,3

0,56

Шатлыкское

95,58

1,99

0,35

0,1

0,05

0,78

1,15

0,58

Медвежье

98,78

0,1

0,02

1,0

0,1

0,56


 

Содержание метана на газоконденсатных месторождениях – 75-95% (табл. 3.2).

 

Химический состав газа газоконденсатных месторождений, об. %

Таблица 3.2

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Вуктыльское

74,80

7,70

3,90

1,80

6,40

4,30

0,10

0,882

Оренбургское

84,00

5,00

1,60

0,70

1,80

3,5

0,5

0,680

Ямбургское

89,67

4,39

1,64

0,74

2,36

0,26

0,94

0,713

Уренгойское

88,28

5,29

2,42

1,00

2,52

0,48

0,01

0,707


 

Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой фракции (сжиженного газа) и газового бензина. Содержание метана – около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40% , реже – до 60% (табл. 3.3).

 

Химический состав газа нефтяных месторождений (попутного газа), об. %

Таблица 3.3

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Бавлинское

35,0

20,7

19,9

9,8

5,8

8,4

0,4

1,181

Ромашкинское

3838

19,1

17,8

8,0

6,8

8,0

1,5

1,125

Самотлорское

53,4

7,2

15,1

8,3

6,3

9,6

0,1

1,010

Узеньское

50,2

20,2

16,8

7,7

3,0

2,3

1,010


 

Тяжёлым нефтям свойственны  сухие нефтяные газы (с преобладанием  метана).

  (3.1)

Под тяжелыми УВ понимаются углеводороды от этана (С2Н6) и выше.

Лёгким нефтям свойственны  жирные газы:

 

  (3.2)

 

3.1.2. Физико-химические свойства углеводородных газов

 

Нефтяной газ при  нормальных условиях – неполярная, аддитивная система (смесь компонентов от С1 до С4). Следовательно, к нему при нормальных условиях применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

,  (3.3)

 

где gi – весовая доля;

Ni – мольная доля;

Vi – объёмная доля;

Пi – параметр i-го компонента.

Плотность смеси газов рассчитывается следующим образом:

 

.  (3.4)

 

При нормальных условиях плотность газа rг = Mi / 22,414.

Нефтяной газ представлен  в виде смеси углеводородов, поэтому  для оценки его физико-химических свойств необходимо знать, как выражается состав смеси.

Массовая доля (gi) – отношение массы i-го компонента, содержащегося в системе к общей массе системы:

 

  (3.5)

 

Молярная (мольная) доля (Ni) – отношение числа молей i-го компонента к общему числу молей в системе:

 

  (3.6)

,    (3.7)

 

где mi – масса i-го компонента;

Мi – молекулярный вес.

 

  (3.8)

 

Объёмная доля (Vi) – доля, которую занимает компонент в объёме системы.

 

  (3.9)

 

Для идеального газа соблюдается  соотношение Vi = Ni .

Молекулярная масса смеси рассчитывается следующим образом:

 

  (3.10)

 

Относительная плотность газа по воздуху:

 

.  (3.11)

 

Для нормальных условий  » 1,293; для стандартных условий » 1,205.

Если плотность газа задана при атмосферном давлении (0,1013 МПа), то пересчёт её на другое давление (при той же температуре) для идеального газа производится по формуле:

.  (3.12)

 

Смеси идеальных газов  характеризуются аддитивностью парциальных давлений и парциальных объёмов.

Информация о работе Физика нефтяного пласта