Ферромагнетизм

Автор работы: Пользователь скрыл имя, 22 Декабря 2013 в 14:09, реферат

Описание работы

Цель данного реферата заключается в том, чтобы углубленно изучить ферромагнетики, их основные свойства и область применения.
Для выполнения поставленной цели были выдвинуты следующие задачи:
Дать определение ферромагнетикам;
Выяснить какими свойствами они обладают;

Содержание работы

Цели и задачи……………………………………………………………………3
Введение……………………………………………………………………….…4
Свойства ферромагнетиков………………………………………..…………...5
Процесс перемагничивания ферромагнетика……………………..…………..9
Гипотеза элементарных магнитов……….………………………….………...13
Отличие ферромагнетиков от диа- и парамагнетиков……………….……..15
Спиновая природа ферромагнетизма………………………………………..18
Применение ферромагнетиков……………………………….………….……21
Заключение……………………………………………………………………....22
Список литературы……………………………………………………………..23

Файлы: 1 файл

Реферат Ферромагнетизм.doc

— 217.50 Кб (Скачать файл)

     

Существует  эмпирическая зависимость для вычисления удельных потерь энергии на перемагничивание

     

где ƞ - коэффициент, зависящий от вещества; B- максимальное значение индукции; n - показатель степени, зависящий от Bи обычно принимаемый      

n=1,6 при 0,1Тл < B< 1,0 Тл и n=2 при 0 <B< 0,1 Тл или 1,0 Тл <Bm< 1,6 Тл.     

Явление гистерезиса и связанные  с ним потери энергии могут быть объяснены гипотезой элементарных магнитиков. Элементарными магнитиками в веществе являются частицы, обладающие магнитным моментом. Это могут быть магнитные поля вращающихся по орбитам электронов, а также их спиновые магнитные моменты. Причем последние играют в магнитных явлениях наиболее существенную роль. 

 

 

 

Гипотеза элементарных магнитов.     

При нормальной температуре вещество ферромагнетика состоит из самопроизвольно намагниченных  в определенном направлении областей (доменов), в которых элементарные магнитики расположены почти параллельно один другому и удерживаются в таком положении магнитными силами и силами электрического взаимодействия.      

Магнитные поля отдельных областей не обнаруживаются во внешнем пространстве, т.к. все они намагничены в разных направлениях. Интенсивность самопроизвольного намагничивания доменов J зависит от температуры и при абсолютном нуле равна интенсивности полного насыщения. Тепловое движение разрушает упорядоченную структуру и при некоторой температуре q , характерной для данного вещества, упорядоченное расположение полностью разрушается. Эта температура называется точкой Кюри. Выше точки Кюри вещество обладает свойствами парамагнетика.      

Для никеля температура Кюри равна 360 °С. Если подвесить образец никеля вблизи пламени горелки так, чтобы он находился в поле сильного постоянного магнита, то не нагретый образец может располагаться горизонтально, сильно притягиваясь к магниту (рис 1). По мере нагрева образца и достижения температуры   ферромагнитные свойства у никеля исчезают и образец никеля падает. Остыв до температуры ниже точки Кюри, образец вновь притянется к магниту. Нагревшись, вновь падает и т.д., колебания будут продолжаться все время, пока горит свеча.

Рис. 1 – демонстрация точки Кюри1    


1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999 

Под влиянием внешнего поля состояние вещества может изменяться двумя способами. Намагниченность может меняться либо за счет переориентации доменов, либо за счет смещения их границ в направлении  области с меньшей составляющей намагниченности, совпадающей по направлению с внешним полем. Смещение границы домена совершается обратимо только до определенного предела, после чего часть или вся область необратимо переориентируется. При быстрой скачкообразной переориентации домена создаются вихревые токи, вызывающие потери энергии при перемагничивании.      

Исследования  показывают, что второй способ изменения  ориентации характерен для крутого  участка кривой намагничивания, а  первый - для участка области насыщения.      

После уменьшения напряженности внешнего магнитного поля до нуля часть доменов  сохраняет новое направление  преимущественного намагничивания, что проявляется как остаточная намагниченность.  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

Отличие ферромагнетиков  от диа- и парамагнетиков      

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных  атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями  его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.     

В этом нас убеждает ряд фактов. Прежде всего на это указывает зависимость  магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение (закалка, отжиг). Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабо магнитных металлов, как медь (60%), марганец (25%) и алюминий (15%). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75% железа и 25% никеля, почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.     

Ферромагнитные  вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.     

Подробное изучение процессов намагничивания и размагничивания железа и других ферромагнитных веществ показало, что  ферромагнитные свойства вещества определяются не магнитными свойствами отдельных атомов или молекул, которые сами по себе парамагнитны, а намагничиванием целых областей, называемых доменами,- небольших участков вещества, содержащих очень большое количество атомов.     

Взаимодействие  магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля ненамагниченным.      

Под влиянием внешнего поля происходит перестройка  и перегруппировка таких «областей  самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.

     При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе  ее с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного


1 Журнал экспериментальной и теоретической физики (ЖЭТФ), Вып. 1, Январь 1999

 

момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.     

При снятии (уменьшении) внешнего поля происходит обратный процесс распада  и дезориентации этих областей, т. е. размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, т.е. гистерезис ферромагнитных тел.   
  
  
  
  
  
  
  
  
  
  
  
  
  
 

Спиновая природа ферромагнетизма      

Измерения гиромагнитного отношения  для ферромагнетиков на основе эффектов Эйнштейна — де Гааза и Барнетта показали, что ферромагнетизм имеет  спиновую природу, т. е. обусловлен спиновыми  магнитными моментами электронов атомов ферромагнетика. В атоме электроны распределяются по слоям, в каждом из которых в соответствии с квантовым принципом запрета Паули может находиться не более определенного числа электронов. Все слои атома, кроме первого (ближайшего к ядру атома), подразделяются на оболочки, число которых тем больше, чем больше номер слоя. Электроны распределяются по слоям и по оболочкам в них так, чтобы энергия атома была наименьшей. Результирующие спиновые и орбитальные магнитные моменты всех электронов, находящихся в целиком заполненной ими оболочке или слое атома, равны нулю. Атомы элементов, обладающих ферромагнитными свойствами (Fe, Со, Ni), принадлежат к числу переходных атомов периодической системы Д. И. Менделеева. В этих атомах нарушается последовательность заполнения электронами мест в слоях и оболочках. Прежде чем полностью «застроится» нижний слой, начинается заполнение выше расположенного слоя. Поэтому в переходном атоме имеются не полностью занятые электронами внутренние слои и оболочки. Например, в атоме железа 26 его электронов распределены по четырем слоям. Первый и второй слои целиком заполнены и содержат соответственно 2 и 8 электронов. Третий и четвертый слои не достроены: в третьем слое находится 14 электронов (вместо 18), а в четвертом — 2 (вместо 32). 14 электронов третьего слоя распределены по оболочкам следующим образом: в первой оболочке — 2, а во второй и третьей — по 6 электронов. Спины электронов, принадлежащих к каждой оболочке, могут быть ориентированы в двух противоположных направлениях. В застроенных первых двух слоях атома железа магнитные спиновые моменты электронов взаимно компенсируют друг друга. В третьем слое первые две оболочки также характерны тем, что спиновые магнитные моменты электронов на этих оболочках компенсируют друг друга. Что же касается третьей оболочки, то из шести находящихся на ней электронов пять имеют спины, ориентированные в одном направлении, и лишь один электрон имеет спин, ориентированный противоположно. Итак, в атоме железа спины четырех электронов в третьем слое остаются некомпенсированными. Что касается наружных валентных электронов атома железа, то нх спины, вообще говоря, тоже могут быть некомпенсированы. Однако, как показывает опыт, на магнитные свойства атома железа валентные электроны, слабо связанные с атомом, существенного влияния не оказывают.     

В изолированном атоме железа орбитальные  движения электронов дают некоторый  орбитальный магнитный момент. Однако при образовании кристалла железа происходит своеобразное «замораживание»  электронных орбит, приводящее к  тому, что орбитальные магнитные моменты электронов практически не участвуют в создании магнитных моментов атомов. Причины такого «замораживания» еще не вполне выяснены. Вместе с тем измерения гиромагнитного отношения ясно показывают, что магнитные свойства ферромагнитных веществ связаны с некомпенсированными спиновыми магнитными моментами небольшого числа электронов атома. Таким образом, ферромагнитными свойствами могут обладать только такие вещества, в атомах которых имеются недостроенные внутренние электронные оболочки. Однако это условие является необходимым, но не достаточным. Например, ряд атомов элементов переходной группы (Сг, Mn, Pt и др.) и редкоземельных элементов имеют недостроенные внутренние оболочки, но эти вещества являются парамагнетиками. Для объяснения самопроизвольной намагниченности ферромагнетиков необходимо предположить, что в них между носителями магнетизма — спинами электронов — существует взаимодействие, способное при температурах более низких, чем точка Кюри, обеспечить спонтанную намагниченность доменов. Естественно предположить, что между спиновыми магнитными моментами существует обыкновенное магнитное взаимодействие, подобное взаимодействию двух проводников с током или двух соленоидов. Однако расчеты показывают, что энергия этого взаимодействия оказывается весьма малой величиной порядка 10-23 Дж, так что даже при температуре жидкого воздуха средняя энергия теплового движения атомов превосходит энергию их магнитного взаимодействия. Поэтому за счет магнитного взаимодействия невозможно образование самопроизвольной намагниченности.     

Я. И. Френкель и В. Гейзенберг (1928) показали, что самопроизвольная намагниченность  может быть следствием электрического взаимодействия электронов. Возникновение  самопроизвольной намагниченности  за счет электрических сил нельзя объяснить с точки зрения классической физики. Само существование спина у электрона является «неклассическим», т. е. чуждым классической физике явлением. Не удивительно поэтому, что и электрическое взаимодействие электронов, приводящее к состоянию самопроизвольной намагниченности ферромагнетиков, также является особым квантовым взаимодействием, называемым обменным взаимодействием.  
  
  
  
  
  
  
  
  
  
  
  
  
 

 

Применение ферромагнетиков       

 Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнитомягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнитожесткие материалы применяют при изготовлении постоянных магнитов.     

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т.е. создает магнитное поле в  окружающем пространстве.     

Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т.д.     

Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты, сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.     

Магнитные материалы широко используются в традиционной технологии записи информации в винчестере.

Применение ферромагнетиков  в технике: роторы генераторов и  электродвигателей; сердечники трансформаторов, электромагнитных реле; в электронно-вычислительных машинах (ЭВМ), телефонах, магнитофонах, на магнитных лентах. На практике их применяют для катушек индуктивности, трансформаторов высокой частоты. Феррит обладает очень хорошей электромагнитной проводимостью, лучше, чем трансформаторная сталь. На подобных катушках с ферритом можно построить генераторы, и возбудители электромагнитных волн.   
  
  
 

Заключение     

Исходя  из информации в данном реферате, можно  сделать следующие выводы.     

Ферромагнетики – твердые вещества, обладающие при не слишком высоких  температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.      

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.     

При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.     

Информация о работе Ферромагнетизм