Естественная и искусственная радиоактивность

Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 12:29, реферат

Описание работы

Резерфорд заметил, что никто из его предшественников даже не пробовал проверить, не отклоняются ли некоторые альфа-частицы под очень большими углами. Модель сетки с изюмом просто не допускала существования в атоме столь плотных и тяжелых элементов структуры, что они могли бы отклонять быстрые альфа-частицы на значительные углы, поэтому никто и не озадачивался тем, чтобы проверить такую возможность. Резерфорд попросил одного из своих студентов переоборудовать установку таким образом, чтобы можно было наблюдать рассеяние альфа-частиц под большими углами отклонения, чтобы окончательно исключить такую возможность.
В качестве детектора использовался экран с покрытием из сульфида натрия — материала, дающего флуоресцентную вспышку при попадании в него альфа-частицы. Каково же было удивление не только студента, непосредственно проводившего эксперимент, но и самого Резерфорда, когда выяснилось, что некоторые частицы отклоняются на углы вплоть до 180°!

Содержание работы

Введение.
1.История открытия радиоактивности.
2.Радиоактивность.
3.Виды радиации.
4.Влияние на организм.
Список используемой литературы.

Файлы: 1 файл

Реферат по физике на тему- «Естественная и искусственная радиоак.doc

— 71.50 Кб (Скачать файл)

 

МИНОБРНАУКИ  
         ФГБОУ ВПО ВСГУТУ  
       Технологический колледж

 

 

Реферат по на тему:

«Естественная и искусственная радиоактивность»

 

 

 

 

Выполнил: Дамшаев Доржо Витальевич  
группа 113/3

 

 

 

 

 

Проверил:

Пластинина Валентина Михайловна

 

 

 

2014 год, Улан-Удэ.

 

 

Содержание.

Введение. 

1.История открытия радиоактивности. 
         2.Радиоактивность. 
         3.Виды радиации. 
         4.Влияние на организм.

Список используемой литературы.                                                                                                                                                                          

 

Введение.

В начале ХХ века ученые уже знали, что атом содержит отрицательно заряженные электроны. Однако преобладало представление, что атом представляет собой что-то похожее на положительно заряженную тонкую сетку, заполненную отрицательно заряженными электронами-изюминами, — модель так и называлась «модель сетки с изюмом» (Модель Томпсона).

В 1898 году английский ученый Э.Резерфорд (ученик Томпсона) приступил к изучению явления радиоактивности. В 1903 году Э.Резерфорд доказывает ошибочность предположения своего учителя Томпсона о его теории строении атома и в 1908-1911 г.г. проводит опыты по рассеянью частиц (ядер гелия) металлической фольгой. Используя естественный источник радиоактивного излучения, Резерфорд построил “пушку”, дававшую направленный и сфокусированный поток частиц. Пушка представляла собой свинцовый ящик с узкой прорезью, внутрь которого был помещен радиоактивный материал. Благодаря этому частицы (в данном случае альфа-частицы, состоящие из двух протонов и двух нейтронов), испускаемые радиоактивным веществом во всех направлениях, кроме одного, поглощались свинцовым экраном, и лишь через прорезь вылетал направленный пучок альфа-частиц. Далее на пути пучка стояло еще несколько свинцовых экранов с узкими прорезями, отсекавших частицы, отклоняющиеся от строго заданного направления. В результате к мишени подлетал идеально сфокусированный пучок альфа-частиц, а сама мишень представляла собой тончайший лист золотой фольги. В нее-то и ударял альфа-луч. После столкновения с атомами фольги альфа-частицы продолжали свой путь и попадали на люминесцентный экран, установленный позади мишени, на котором при попадании на него альфа-частиц регистрировались вспышки. По ним экспериментатор мог судить, в каком количестве и насколько альфа-частицы отклоняются от направления прямолинейного движения в результате столкновений с атомами фольги.

Резерфорд заметил, что никто из его предшественников даже не пробовал проверить, не отклоняются ли некоторые альфа-частицы под очень большими углами. Модель сетки с изюмом просто не допускала существования в атоме столь плотных и тяжелых элементов структуры, что они могли бы отклонять быстрые альфа-частицы на значительные углы, поэтому никто и не озадачивался тем, чтобы проверить такую возможность. Резерфорд попросил одного из своих студентов переоборудовать установку таким образом, чтобы можно было наблюдать рассеяние альфа-частиц под большими углами отклонения, чтобы окончательно исключить такую возможность.

В качестве детектора использовался экран с покрытием из сульфида натрия — материала, дающего флуоресцентную вспышку при попадании в него альфа-частицы. Каково же было удивление не только студента, непосредственно проводившего эксперимент, но и самого Резерфорда, когда выяснилось, что некоторые частицы отклоняются на углы вплоть до 180°!

В рамках устоявшейся модели атома полученный результат не мог быть истолкован: в сетке с изюмом попросту нет ничего такого, что могло бы отразить мощную, быструю и тяжелую альфа-частицу. Резерфорд вынужден был заключить, что в атоме большая часть массы сосредоточена в невероятно плотном веществе, расположенном в центре атома. А вся остальная часть атома оказывалась на много порядков менее плотной, нежели это представлялось раньше. Из поведения рассеянных альфа-частиц вытекало также, что в этих сверхплотных центрах атома, которые Резерфорд назвал ядрами, сосредоточен также и весь положительный электрический заряд атома, поскольку только силами электрического отталкивания может быть обусловлено рассеяние частиц под углами больше 90°.

Картина атома, нарисованная Резерфордом по результатам опыта, нам сегодня хорошо знакома. Атом состоит из сверхплотного, компактного ядра, несущего на себе положительный заряд, и отрицательно заряженных легких электронов вокруг него. Позже ученые подвели под эту картину надежную теоретическую базу, но началось всё с простого эксперимента с маленьким образцом радиоактивного материала и куском золотой фольги.

Опыты по рассеянью частиц убедительно показали, что почти вся масса атома сосредоточена в очень малом объеме – атомном ядре, диаметр которого примерно в 100000 раз меньше диаметра атома.

Большинство частиц пролетает мимо массивного ядра, не задевая его, но изредка происходит столкновение частицы с ядром и тогда она может отскочить назад.

Таким образом, первым его фундаментальным открытием в этой области было обнаружение неоднородности излучения, испускаемого ураном. Так в науку о радиоактивности впервые вошло понятие о лучах. Он также предложил и названия: распад и частица. Немного позже была обнаружена еще одна составляющая часть излучения, обозначенная третьей буквой греческого алфавита: гамма-лучи. Это произошло вскоре после открытия радиоактивности. На долгие годы эти частицы стали для Э.Резерфорда незаменимым инструментом исследований атомных ядер. В 1903 году он открывает новый радиоактивный элемент – самопроизвольный распад тория. В 1901-1903 годах он совместно с английским ученым Ф.Содди проводит исследования, которые привели к открытию естественного превращения элементов ( например радия в радон) и разработке теории радиоактивного распада атомов.В 1903 году немецкий физик К.Фаянс и Ф.Содди независимо друг от друга сформулировали правило смещения, в котором описывается поведение ядра при альфа-распаде. Весной 1934 года в «Докладах Парижской академии наук» появилась статья под названием «Новый тип радиоактивности». Ее авторы Ирен Жолио-Кюри и ее муж Фредерик Жолио-Кюри обнаружили, что бор, магний, и алюминий, облученные альфа–частицами, становятся сами радиоактивными и при своем распаде испускают позитроны. Так была открыта искусственная радиоактивность. В результате ядерных реакций (например, при облучении различных элементов альфа–частицами или нейтронами) образуется радиоактивные изотопы элементов, в природе не существующие. Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и, тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Так из общего числа известных ныне около 2000 радиоактивных изотопов около 300 – природные, а остальные получены искусственно, в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия.

В 1934 г. И. и Ф.Жолио-Кюри в результате изучения искусственной радиации были открыты новые варианты α-распада – испускание позитронов, которые были первоначально предсказаны японскими учеными Х. Юккавой и С. Сакатой. И. и Ф. Жолио-Кюри осуществили ядерную реакцию, продуктом которой был радиоактивный изотоп фосфора с массовым числом 30. Выяснилось, что он испускал позитрон. Этот тип радиоактивных превращений называют бета-распадом (подразумевая под бета-распадом испускание электрона).

В последствии целым рядом ученых разных стран (Дж.Данинг, В.А.Карнаухов, Г.Н.Флеров, И.В.Курчатов и др.) были обнаружены сложные, включающие бета-распад, превращения, в том числе испускание запаздывающих нейтронов.

Одним из первых ученых в бывшем СССР, который приступил к изучению физики атомных ядер вообще и радиоактивности в частности был академик И.В.Курчатов. В 1934 году он открыл явление разветвления ядерных реакций, вызываемых нейтронной бомбардировкой и исследовал искусственную радиоактивность ряда химических элементов. В 1935 году при облучении брома потоками нейтронов Курчатов и его сотрудники заметили, что возникающие при этом радиоактивные атомы брома распадаются с двумя различными скоростями. Такие атомы назвали изомерами, а открытое учеными явление изомерией.

Наукой было установлено, что быстрые нейтроны способны разрушать ядра урана. При этом выделяется много энергии и образуются новые нейтроны, способные продолжать процесс деления ядер урана. Позднее обнаружилось, что атомные ядра урана могут делиться и без помощи нейтронов. Так было установлено самопроизвольное (спонтанное) деление урана. В честь выдающегося ученого в области ядерной физики и радиоактивности 104-й элемент периодической системы Менделеева назван курчатовием.

С 1943 Курчатов возглавлял научные работы, связанные с атомной проблемой. Под его руководством был сооружен первый в Москве циклотрон (1944) и первый в Европе атомный реактор (1946), созданы первая советская атомная бомба (1949) и первая в мире термоядерная бомба (1953), сооружены первая в мире промышленная атомная электростанция (1954) и крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958).

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако наряду с положительными факторами использования свойств радиоактивности в интересах человечества можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких можно относится ядерное оружие во всех его формах, затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходах в море и на земле, аварии на атомных электростанциях и др. а непосредственно для Украины использование радиоактивности в атомной энергетике привело к Чернобыльской трагедии.

  
РАДИОАКТИВНОСТЬ.

Самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. Историческая справка. Беккерель. Весной 1896 французский физик А.Беккерель сделал ряд сообщений об обнаружении им нового вида излучения (впоследствии названном радиоактивным), которое испускается солями урана. Подобно открытым за несколько месяцев до этого рентгеновским лучам, оно обладало проникающей способностью, засвечивало экранированную черной бумагой фотопластинку и ионизировало окружающий воздух. Гипотеза, которая привела к открытию радиоактивности, возникла у Беккереля под влиянием исследований Рентгена. Поскольку при генерации Х-лучей наблюдалась фосфоресценция стеклянных стенок рентгеновской трубки, Беккерель предположил, что любое фосфоресцентное свечение сопровождается испусканием рентгеновского излучения. Для проверки этого предположения он поместил различные фосфоресцирующие вещества на завернутые в черную бумагу фотопластинки и получил неожиданный результат: засвеченной оказалась единственная пластинка, с которой соприкасался кристалл соли урана. Многочисленные контрольные опыты показали, что причиной засветки явилась не фосфоресценция, а именно уран, в каком бы химическом соединении он ни находился. Свойство радиоактивного излучения вызывать ионизацию воздуха позволило наряду с фотографическим методом регистрации применять более удобный электрический метод, что значительно ускорило процесс исследований.

Кюри. Пользуясь электрическим методом, Г. Шмидт и М. Кюри в 1898 обнаружили радиоактивность элемента тория. В следующем году Дебьерн открыл радиоактивный элемент актиний. Начатый супругами П. и М.Кюри систематический поиск новых радиоактивных веществ и изучение свойств их излучения подтвердили догадку Беккереля о том, что радиоактивность урановых соединений пропорциональна числу содержащихся в них атомов урана. Среди обследованных минералов эту закономерность нарушала лишь урановая смоляная руда (уранинит), которая оказалась в четыре раза активнее, чем соответствующее количество чистого урана. Кюри сделали вывод о том, что в уранините должен содержаться неизвестный высокоактивный элемент. Проведя тщательное химическое разделение уранинита на составляющие компоненты, они открыли радий, по химическим свойствам сходный с барием, и полоний, который выделялся вместе с висмутом.

Резерфорд. В дальнейших исследованиях радиоактивности ведущая роль принадлежала Э. Резерфорду. Сосредоточив внимание на изучении этого явления, он установил природу радиоактивных превращений и сопутствующего им излучения.

Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение.

Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение - это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.

радиоактивного излучения в магнитном поле. 

3. 
Какая бывает радиация?

 

Различают несколько видов радиации.

 

Альфа-частицы: относительно тяжелые, положительно заряженные частицы,

представляющие собой ядра гелия.

 

Бета-частицы - это просто электроны.

 

Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет,

однако обладает гораздо большей проникающей способностью. 
4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.   

3.Те источники радиации, которыми являются радиоактивные вещества,

могут проникать в организм с пищей и водой (через кишечник),    

Информация о работе Естественная и искусственная радиоактивность