Датчики температуры

Автор работы: Пользователь скрыл имя, 19 Апреля 2013 в 13:56, реферат

Описание работы

Анализ литературных источников позволяет сделать вывод о все более широком использовании в системах регулирования полупроводниковых датчиков температуры, разнообразие которых позволяет решить множество сложных задач. Появившиеся в последнее время датчики на изолирующих подложках типа КНС-структур позволяют во многих специфических случаях заменить традиционные металлические (например платиновые) датчики и тем самым удешевить измерения и повысить надежность систем.
Волоконно-оптические датчики для контроля температуры обладают целым рядом преимуществ по сравнению с другими типами подобных устройств .

Содержание работы

1.Введение…………………………………………………………….3 стр.
2.История развития…………………………………………………...8 стр.
3.Заключение…………………………………………………………15 стр.
4.Библиографический список……………………………………….17 стр.

Файлы: 1 файл

История автоматизации.doc

— 447.00 Кб (Скачать файл)

До тех  пор, пока температуры в точках А  и В одинаковы, ток в цепи не протекает. Если температуры в точках А и В отличаются, то по цепи начинает протекать

Рис. 1.  Принцип работы термоэлемента.

электрический ток. Это явление называется термоэлектрическим эффектом или эффектом Сибека, по имени открывшего его в 1821 году исследователя. Эта так называемая термоэлектродвижущая сила увеличивается как функция разности температур. Возникающее напряжение лежит в пределах нескольких милливольт, что требует применения дополнительной очень чувствительной — и поэтому сравнительно дорогостоящей - электронной измерительной аппаратуры. Из-за низкого уровня сигнала следует тщательно выбирать процедуру передачи и соединительные провода. Необходимо иметь в виду, что термоэлемент измеряет разность температур, а не ее абсолютное значение, поэтому температура одного из контактов должна быть известна с высокой точностью. Для различных температурных диапазонов используются разные сочетания металлов. Термоэлементы весьма надежны и недороги, имеют малую теплоемкость и способны работать в широком диапазоне температур.

Металлы имеют  положительный температурный коэффициент  сопротивления, т.е. с увеличением температуры сопротивление проводника растет. Это свойство используется в резистивных детекторах температуры.

 

Старые примитивные  датчики температуры 

 

Несмотря на наличие  такого количества температурных датчиков, до сих пор широкое применение находят достаточно примитивные  датчики. Это, прежде всего, датчики на основе биметаллических пластин наиболее часто применяемых у электроутюгах и электрокаминах, а также термодатчики манометрического типа или датчики расширения. В них используется расширение жидкости находящейся в закрытом объеме.


Одной из разновидностей такого датчика оснащены, например, нагревательные элементы бытовых бойлеров фирмы Aricton. На одном основании расположен сам ТЭН, трубчатый датчик температуры и регулируемый контакт: как достигли заданной температуры – отключились. Конструкция настолько проста, что содержит всего лишь одну установочную резьбу и две клеммы для подключения к сети.

 

Волоконно-оптические датчики температуры 

 

Под волоконно-оптическим измерением температуры (английский вариант DTS = Distributed Temperature Sensing) понимают применение оптоэлектронных приборов для измерения температуры, при которой стеклянные волокна использую тся в качестве линейных датчиков. Типичными случаями применения линейных волоконных температурных датчиков являются сферы, связанные с безопасностью, например, системы пожарного оповещения в автомобильных, железнодорожных или сервисных туннелях; термический контроль силовых кабелей и воздушных линий передач для оптимизации производственных отношений; повышение эффективности нефтяных и газовых скважин; обеспечение безопасного рабочего состояния промышленных индукционных плавильных печей; контроль герметичности контейнеров с сжиженным природным газом на судах в разгрузочных терминалах; обнаружение утечек на плотинах и запрудах; контроль температуры при химических процессах; обнаружение утечек в трубопроводах.

 

Специализированные  полупроводниковые датчики

 

Здесь же следует упомянуть  о прецизионном аналоговом температурном  датчике LM335AZ, являющемся одной из разновидностей регулируемого стабилитрона. Здесь уместно вспомнить стабилитрон TL431. Градуировка датчика выполнена при его изготовлении на заводе, поэтому мучительной многоэтапной настройки при изготовлении термометра или терморегулятора делать не надо.

 

Согласно технической документации LM335AZ имеет положительный температурный коэффициент 10mV/°K. Для перевода привычных нам градусов Цельсия в градусы Кельвина следует воспользоваться формулой t °K = 273 + t °C. Согласно этой формуле при 0°C на выходе датчика будет напряжение (273 + 0°C) * 10mV/°K = 2730mV, а при температуре, например, 50°C получится (273 + 50°C) * 10mV/°K = 3230mV.

 

Такие чудесные свойства позволяют с помощью этого  датчика создавать терморегуляторы, просто измерители температуры, а также  схемы компенсации температуры  холодного спая термопар, о чем будет сказано чуть выше. Все упомянутые схемы получаются достаточно простыми, их можно посмотреть в технической документации, или как ее называют, дата шиты (Data Sheet).

 

Датчики температуры  из диодов и транзисторов

 

В тех же диапазонах температуры, что у полупроводниковых термосопротивлений для измерения и контроля температуры достаточно часто используются обычные диоды или p-n переходы транзисторов.

Применение этих приборов объясняется тем, что они имеют  температурный коэффициент напряжения ТКН. У всех полупроводников он отрицательный и примерно одинаков: -2mV/°C. Чтобы в этом убедиться, достаточно проделать простейший опыт, описанный ниже.

Если цифровым мультиметром китайского производства при комнатной  температуре «прозванивать» кремниевые диоды или переходы транзисторов, то на индикаторе высвечиваются цифры порядка 690 - 700. Для германиевых полупроводниковых приборов показания будут 400 - 450, правда, германиевые приборы применяются в настоящее время очень редко. Это не что иное, как падение напряжения, показанное в милливольтах, на p-n переходе в прямом направлении.

Если в момент такого измерения диод или транзистор немного  подогреть, хотя бы паяльником, то показания  будут уменьшаться. Причем чем больше степень нагрева, тем заметнее изменение показаний прибора в меньшую сторону. Чаще всего такие датчики применяются в различных электронных схемах, например в усилителях звуковых частот для стабилизации режимов работы схемы.

 

 

3. Заключение.

 

Анализ литературных источников позволяет сделать вывод о все более широком использовании в системах регулирования полупроводниковых датчиков температуры, разнообразие которых позволяет решить множество сложных задач. Появившиеся в последнее время датчики на изолирующих подложках типа КНС-структур позволяют во многих специфических случаях заменить традиционные металлические (например платиновые) датчики и тем самым удешевить измерения и повысить надежность систем.

Волоконно-оптические датчики  для контроля температуры обладают целым рядом преимуществ по сравнению с другими типами подобных устройств . Такой датчик незаменим во многих направлениях современной промышленности. Пока у этих устройств нет аналогов, которые могли бы так же успешно применяться в газовой промышленности, сушильных установках, например, в СВЧ, турбинах и генераторах, двигателях, различных областях медицины и инженерии, аэронавтике и космонавтике . Основная проблема эксплуатации ВОД датчиков температуры заключается в необходимости дорогостоящего оборудования для снятия и обработки показаний датчиков и малом быстродействии; вместе с тем их использование является относительно недорогим для конечных потребителей за счет устойчивости к излучениям и коррозии, малому потреблению энергии и определенности получаемых данных.

Датчики температуры имеют широкое применение в прокатном производстве. С помощью датчиков температуры измеряют температуру в нагревательных печах, и по ним регулируют режим нагрева заготовок до нужной температуры, измеряют конечную температуру металла после прокатки.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Библиографический  список.

http://temperatures.ru/pages/volokonno_opticheskie_datchiki_temperatury

http://elektromehanika.org/publ/stati_po_ehlektronike/datchiki_temperatury_4_chasti/4-1-0-127

http://1interesnoe.info/2011/03/datchiki_temperatury/

 

 

 

 

 

 

 




Информация о работе Датчики температуры