Методы определения уровня жидкости с помощью измерения давления

Автор работы: Пользователь скрыл имя, 26 Февраля 2015 в 22:16, курсовая работа

Описание работы

Цель курсового проекта: исследовать современные методы определения уровня жидкости с помощью измерения давления.

При выполнении курсового проекта были поставлены следующие задачи:
1) Теоретическое исследование материала по измерению уровня и давления жидкости;
2) Определить связь между давлением и уровнем жидкости.

Содержание работы

Введение
5
1
Теоретические сведения о давлении и жидкости
6
1.1
Давление и жидкость. Основные понятия
6
1.2
Единицы измерения давления
8
1.3
Физические свойства жидкости
8
2
Гидростатическое давление
11
2.1
Понятие о гидростатическом давлении
11
2.2
Гидростатический парадокс
11
2.3
Основное уравнение гидростатики
12
2.4
Вакуум
13
3
Приборы для измерения давления
15
3.1
Классификация приборов для измерения давления
14
3.2
Описание и принцип работы приборов
16
3.2.1
Жидкостные манометры
16
3.2.2
Вакуумметр
19
3.2.3
Барометр
20
3.2.4
Деформационные манометры и дифманометры
21
4
Определение уровня жидкости посредством измерения давления
30
5
Расчет давления и уровня жидкости
35

Заключение
38

Список использованной литературы
39

Файлы: 1 файл

5 КУРСОВАЯ.docx

— 1.04 Мб (Скачать файл)

Вязкость проявляется в том, что при движении жидкости возникает сила внутреннего трения Т между перемещающимися один относительно другого слоями с площадью соприкосновения S. определяется законом Ньютона:

,                                                      (1.13)

где S – площадь соприкасающихся слоёв, м2;

      du – скорость смещения слоя «b» относительно слоя «a», м/с;

      dy – расстояние, на котором скорость движения слоёв изменилась на du, м;

    du/dy – градиент скорости, изменение скорости по нормали к направлению движения (с-1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Гидростатическое давление

 

 

2.1 Понятие о  гидростатическом давлении

 

Гидростатическое давление p – это скалярная величина, характеризующая напряжённое состояние жидкости. Давление равно модулю нормального напряжения в точке: p = /s /.

Давление в системе СИ измеряется в паскалях: Па = Н/м2.

Связь единиц давления в различных системах измерения такая:

100 000 Па = 0,1 МПа = 1 кгс/см2 = 1 ат = 10 м вод. ст.

Два свойства гидростатического давления:

  1. Давление в покоящейся жидкости на контакте с твёрдым телом вызывает напряжения, направленные перпендикулярно к поверхности раздела.
  2. Давление в любой точке жидкости действует одинаково по всем направлениям. Это свойство отражает скалярность давления.

 

2.2 Гидростатический парадокс

 

Суммарное давление на горизонтальное дно зависит только от глубины погружения дна h0 и величины площади последнего и не зависит от формы сосуда, а следовательно, и от веса налитой в эти сосуды жидкости. На рисунке 2 показано несколько сосудов личных форм с плоским дном площадью глубиной жидкости в них h, одинаковыми для всех сосудов.

 

 

Рисунок 2 - Гидростатический парадокс

 

Различные формы стенок сосудов и различные веса жидкости в этих сосудах не оказывают никакого влияния на величину суммарного давления на их дно, равного для всех сосудов согласно:

 

                                                      (2.1)

 

Это кажущееся противоречие известно под названием гидростатического парадокса.

 

2.3 Основное уравнение гидростатики

 

Основное уравнение гидростатики гласит, что полное давление в жидкости p равно сумме внешнего давления на жидкость p0 и давления веса столба жидкости pж, то есть

                                             (2.2)

 

где h – высота столба жидкости над точкой (глубина её погружения), в которой определяется давление (рисунок 3).

 

Из уравнения следует, что давление в жидкости увеличивается с глубиной и зависимость является линейной.

 

 

Рисунок 3 - Схема к основному уравнению гидростатики: 1 – открытый резервуар; 2 – пьезометр

 

 

Рисунок 4 - Изменение давления

 

В частном случае для открытых резервуаров, сообщающихся с атмосферой (рисунок 4), внешнее давление на жидкость равно атмосферному давлению po = pатм = 101 325 Па 1 ат. Тогда основное уравнение гидростатики принимает вид:

 

                                                     (2.3)

 

Открытые резервуары – это не только баки, ёмкости, сообщающиеся с атмосферой, но также любые канавы с водой, озёра, водоёмы и т.д.

Избыточное давление (манометрическое) есть разность между полным и атмосферным давлением. Из последнего уравнения получаем, что для открытых резервуаров избыточное давление равно давлению столба жидкости:

 

                                         (2.4)

 

2.4 Вакуум

Рассмотрим два сосуда I и II (риcунок 5), соединённые между собой. Сосуд II заполнен жидкостью и имеет давление на свободной поверхности, равное атмосферному PA. Из сосуда I, постепенно откачивая воздух, создадим разрежение с давлением РРАЗР меньше атмосферного. Тогда жидкость из сосуда II начнёт подниматься (всасываться) по трубке.

 

Рисунок 5 - Определение величины вакуума

Пусть при каком-то Рразр уровень в трубке поднялся на величину hV. Рассмотрим равновесие частиц жидкости в трубке на уровне а – а. Так как частицы жидкости в трубке на уровне а – а находятся в равновесии, то это значит, что давление со стороны сосуда I, равное Рразр + г hV, и давление со стороны сосуда II, равное PA, между собой равны. В этом случае можно написать, что Рразр + г hV = PA отсюда:

                                             (2.5)

Разность между атмосферным PA и абсолютным давлением Рразр, когда оно меньше атмосферного, называется вакуумметрическим давлением, или вакуумом. Иначе, вакуум – это недостаток давления до атмосферного.

Вакуум измеряется в тех же единицах, что и гидростатическое давление. Вакуум можно измерить и высотой столба жидкости. Вакуум встречается в насосах и иных гидравлических аппаратах и сооружениях, например в сифонах, и т.п.

Теоретически наибольшая величина вакуума может быть равна 1 кгc/см2, или 10,33 м вод. ст., или 101,3 кН/м2. Практически такой величины вакуума добиться нельзя, так как абсолютное разрежение над жидкостью создать невозможно, потому что в пространстве над жидкостью неизбежно будут пары жидкости и выделяющийся из жидкости растворённый воздух. Поэтому при перекачке холодной воды величина вакуума практически в насосах бывает не более 7 м вод. ст., при перекачке горячей воды и лёгких жидкостей – значительно меньше.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Приборы для измерения давления

 

 

3.1 Классификация  приборов для измерения давления

 

Многообразие требований породило большое количество приборов, различных по принципу действия, точности измерения и конструктивному оформлению.

Условно все приборы для измерения давления можно классифицировать по следующим признакам:

1) по роду измеряемой величины;

2) принципу действия;

3) классу точности.

 

Классификация по роду измеряемой величины. В зависимости от вида измеряемого давления (избыточного pизб или абсолютного pабс) существует несколько типов приборов:

а) манометры – приборы для измерения положительного избыточного давления;

б) вакуумметры – приборы для измерения отрицательного избыточного давления;

в) мановакуумметры – приборы, позволяющие измерять как положительное избыточное давление, так и отрицательное;

г) дифференциальные манометры – приборы для измерения разности давлений в двух точках;

д) барометры – приборы для измерения абсолютного давления, равного атмосферному. Для измерения абсолютного давления больше атмосферного используют два прибора – барометр и манометр; меньше атмосферного – барометр и вакуумметр.

 

Классификация по принципу действия. Приборы для измерения давления подразделяются на следующие виды:

а) жидкостные – основанные на гидростатическом принципе действия, т. е. измеряемое давление уравновешивается давлением столба жидкости, высота которого определяется непосредственно или путем расчета.

Впервые идея измерения давления по величине столба жидкости была высказана итальянским ученым Э. Торричелли в 1640 г., а осуществлена итальянским механиком Вивиани в 1642 г. и французским ученым Б. Паскалем в 1646 г. Жидкостные приборы не утратили своего значения до настоящего времени. Это объясняется тем, что принцип действия этих приборов очень прост. Они не сложны в изготовлении, точны и надежны;

б) механические – принцип действия которых заключается в том, что под действием давления происходит деформация некоторого упругого элемента, и величина этой деформации служит мерой измеряемого давления;

в) грузопоршневые – манометры, в которых измеряемое давление, действуя на одну сторону поршня, уравновешивается внешней силой, приложенной с противоположной стороны поршня. В качестве уравновешивающей силы используют грузы. Вес груза, деленный на площадь поршня, определяет величину измеряемого давления;

г) электрические – принцип действия основан на изменении электрических свойств некоторых материалов или изменении каких-либо электрических параметров под действием давления;

д) комбинированные – принцип действия которых носит смешанный характер.

 

Классификация по классу точности. По точности показаний все выпускаемые серийно приборы делятся на классы. Классом точности прибора называется основная наибольшая допустимая приведенная погрешность.

Установленные классы точности для приборов давления соответствуют следующему ряду: 0,005; 0,02; 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Механические приборы подразделяют также на технические и образцовые. Образцовые используют для целей поверки, так как они сверяются с эталонными приборами. Технические применяют непосредственно для измерения давления.

 

    1. Описание и принцип работы приборов

 

3.2.1 Жидкостные манометры.

 

 В жидкостных манометрах измеряемое давление или разность давлений уравновешивается гидростатическим давлением столба жидкости. В приборах используется принцип сообщающихся сосудов, в которых уровни рабочей жидкости совпадают при равенстве давлений над ними, а при неравенстве занимают такое положение, когда избыточное давление в одном из сосудов уравновешивается гидростатическим давлением избыточного столба жидкости в другом. Большинство жидкостных манометров имеют видимый уровень рабочей жидкости, по положению которого определяется значение измеряемого давления. Эти приборы используются в лабораторной практике и в некоторых отраслях промышленности.

Виды жидкостных манометров:

1) Двухтрубные  жидкостные манометры. Двухтрубные жидкостные манометры. Для измерения давления и разности давлений используют двухтрубные манометры с видимым уровнем, часто называемыми U -образными. Принципиальная схема такого манометра представлена на рисунке 6, а. Две вертикальные сообщающиеся стеклянные трубки 1, 2 закреплены на металлическом или деревянном основании 3, к которому прикреплена шкальная пластинка 4. Трубки заполняются рабочей жидкостью до нулевой отметки. В трубку 1 подается измеряемое давление, трубка 2 сообщается с атмосферой. При измерении разности давлений к обеим трубкам подводятся измеряемые давления.

 

 

Рисунок  6 - Схемы двухтрубного (в) и однотрубного (б) манометра: 1, 2 - вертикальные сообщающиеся стеклянные трубки; 3 - основание; 4 - шкальная пластина

 

В качестве рабочей жидкости используются вода, ртуть, спирт, трансформаторное масло. Таким образом, в жидкостных манометрах функции чувствительного элемента, воспринимающего изменения измеряемой величины, выполняет рабочая жидкость, выходной величиной является разность уровней, входной - давление или разность давлений. Крутизна статической характеристики зависит от плотности рабочей жидкости.

Для исключения влияния капиллярных сил в манометрах используются стеклянные трубки с внутренним диаметром 8... 10 мм. Если рабочей жидкостью служит спирт, то внутренний диаметр трубок может быть снижен.

Двухтрубные манометры с водяным заполнением применяются для измерения давления, разрежения, разности давлений воздуха и неагрессивных газов в диапазоне до ±10 кПа. Заполнение манометра ртутью измерения расширяет пределы до 0,1 МПа, при этом измеряемой средой может быть вода, неагрессивные жидкости и газы.

При использовании жидкостных манометров для измерения разности давлений сред, находящихся под статическим давлением до 5 МПа, в конструкцию приборов вводятся дополнительные элементы, предназначенные для защиты прибора от одностороннего статического давления и проверки начального положения уровня рабочей жидкости.

Источниками погрешностей двухтрубных манометров являются отклонения от расчетных значений местного ускорения свободного падения, плотностей рабочей жидкости и среды над ней, ошибки в считывании высот h1 и h2.

Плотности рабочей жидкости и среды даются в таблицах теплофизических свойств веществ в зависимости от температуры и давления. Погрешность считывания разности высот уровней рабочей жидкости зависит от цены деления шкалы. Без дополнительных оптических устройств при цене деления 1 мм погрешность считывания разности уровней составляет ±2 мм с учетом погрешности нанесения шкалы. При использовании дополнительных устройств для повышения точности считывания h1, h2 необходимо учитывать расхождение температурных коэффициентов расширения шкалы, стекла и рабочего вещества.

2) Однотрубные жидкостные манометры. Однотрубные манометры. Для повышения точности отсчета разности высот уровней используются однотрубные (чашечные) манометры (рисунок 6, б). У однотрубного манометра одна трубка заменена широким сосудом, в который подается большее из измеряемых давлений. Трубка, прикрепленная к шкальной пластинке, является измерительной и сообщается с атмосферой, при измерении разности давлений к ней подводится меньшее из давлений. Рабочая жидкость заливается в манометр до нулевой отметки.

Информация о работе Методы определения уровня жидкости с помощью измерения давления