Конструкция и расчет регенеративного вращающегося воздухоподогревателя

Автор работы: Пользователь скрыл имя, 13 Января 2014 в 22:54, реферат

Описание работы

Воздухоподогреватели по конструкции выполняются трубчатыми (рекуперативные) и пластинчатыми (регенеративные).
Рекуперативные воздухоподогреватели имеют неподвижную трубчатую поверхность нагрева, через которую непрерывно передается теплота от продуктов сгорания к нагреваемому воздуху. В регенеративных воздухоподогревателях пластинчатая поверхность нагрева вращается и омывается попеременно продуктами сгорания и воздухом, вначале нагреваясь и затем охлаждаясь, отдавая теплоту нагреваемому воздуху.

Файлы: 1 файл

Конструкция и расчет регенеративного вращающегося воздухоподогревателя.docx

— 404.34 Кб (Скачать файл)

На электростанциях питательная  вода до поступления в котел подогревается  в регенеративных подогревателях за счет отбора пара из турбины до 215…270°С, что уменьшает поверхность экономайзера.

Коллекторы экономайзеров обычно размещены вдоль малой (боковой) стороны конвективной шахты. Массовая скорость воды в трубах экономайзера должна быть не менее 500…600 кг/(м2 · с), в кипящих частях экономайзера 800…1000 кг/(м2с). Для обеспечения необходимой скорости движения определяется общее число

Рис. 2.12 г: 2 - трубные змеевики; 3 - коллектор; 8 - опорные стойки.

параллельно включенных труб и по условиям их приварки к коллекторам и создания необходимого шага между трубами устанавливается  число параллельных потоков воды в пакетах экономайзера (обычно имеет  место 2…4 потока).

Рис. 2.12 д: 1 - обмуровка конвективной шахты; 2 - трубные змеевики; 3 - коллектор; 9 - мембранная проставка; 10 - граница установки мембран.

Для интенсификации теплопередачи  с газовой стороны и повышения  компактности пакетов увеличивают поверхность нагрева путем сварки гладких труб на прямых участках с помощью проставок из листовой стали толщиной 3…4 мм. Получаются пакеты так называемых мембранных экономайзеров (рис. 2.12, д). Мембранный экономайзер занимает меньший объем газохода, и за счет тепловоспринимающей поверхности проставок расход гладких труб уменьшается на 25…30% при одинаковом тепловосприятии обычного и мембранного экономайзеров. Такой экономайзер к тому же не требует установки дистанционирующих опор, оказывается жестким по конструкции и опирается на собственные раздающие коллекторы.

В паровых котлах большой мощности (200 МВт и выше) сильно возрастает число параллельных змеевиков экономайзера в одном ходе, при этом трубы должны выходить из коллектора по его периметру в количестве 6…8 шт, что невозможно выполнить. Поэтому обычно удваивают число входных и выходных коллекторов для обеспечения надежности (прочности) стенки коллектора за счет уменьшения числа отверстий. Кроме того, в целях исключения присосов воздуха при выводе труб через наружную стенку газохода (невозможность герметизации мест прохода труб при разном тепловом расширении металла и обмуровки) размещают коллекторы внутри газохода и одновременно используют их как опорные балки для крепления горизонтальных трубных змеевиков.

Конструкцию экономайзера характеризуют  следующие показатели:

удельный объем, занимаемый экономайзером в конвективной шахте, VЭК/QП.К, м3/МВт - габаритная характеристика экономайзера;

удельный расход металла на экономайзер - GЭК/QП.К, кг/МВт - массовая (весовая) характеристика экономайзера.

С уменьшением  диаметра трубок указанные характеристики улучшаются, но предельный диаметр  труб определяется технологией производства и ростом внутреннего гидравлического  сопротивления при сохранении необходимой  массовой скорости воды. В настоящее  время минимальный технологически осуществимый наружный диаметр труб составляет 28 мм при толщине стенки 3 мм.

 

Список используемой

  1. Мочанов С.И. ‘’Аэродинамический расчет котельных установок’’, 1969
  2. Мочанов С.И. ‘’Гидравлический расчет котельных установок’’, 1969
  3. Исаченко В.П. ‘’Теплопередача’’, 1981

Информация о работе Конструкция и расчет регенеративного вращающегося воздухоподогревателя