Физические основы измерения температур

Автор работы: Пользователь скрыл имя, 12 Мая 2014 в 08:43, реферат

Описание работы

Практика неразрушающих испытаний привела к необходимости точного количественного описания энергетического состояния контролируемых объектов, естественной мерой которого является их температура.
В распространившейся шкале Цельсия в качестве опорных точек приняты температуры замерзания, и кипения воды. Рабочими веществами в этой шкале служат спирт или ртуть.

Файлы: 1 файл

Физические основы измерения температур.docx

— 120.58 Кб (Скачать файл)

Физические основы измерения температур.

Практика неразрушающих испытаний привела к необходимости точного количественного описания энергетического состояния контролируемых объектов, естественной мерой которого является их температура.

В распространившейся шкале Цельсия в качестве опорных точек приняты температуры замерзания, и кипения воды. Рабочими веществами в этой шкале служат спирт или ртуть.

Если начало отсчета установлено от абсолютного нуля температур, то получаем абсолютную термодинамическую шкалу, единицей которой служит градус К. Значения температур по этим шкалам соотносятся Т = t + 273,15 К. Одной из возможных реализаций термодинамической температурной шкалы являются показания газового термометра постоянного объема.

Международная практическая температурная шкала (МПТШ) основана на шести реперных точках, соответствующих температурам равновесия фазовых переходов ряда веществ, численные значения которых определены в ряде стран по термодинамической шкале с большой точностью. Обозначения температуры и ее единицы в МПТШ такие же, как и в термодинамической шкале, т.е. t и °С или Т и К.

Для определения температур в промежуточных точках МПТШ служат эталонные приборы - платиновый термометр сопротивления в диапазонах (0 ... 630 °С и -182,97 ... 0 °С) и платинородийплатиновой термопары (630... 1063 °С).

Однозначная связь между мощностью и спектром излучения и температурой тела существует только для АЧТ. Для реальных объектов введены понятия эквивалентных температур.

При определении температуры изделий, находящихся в непосредственной близости от высоконагретых тел, необходимо учитывать излучение фона, отраженное от объекта контроля.

При контроле реальных объектов необходимо учитывать также эффекты ослабления ИК-излучения в атмосфере или среде, отделяющих изделие о детектора. Спектр пропускания ИК-лучей атмосферой имеет два характерных «окна» прозрачности (...5 и 8…14 мкм).

СРЕДСТВА КОНТРОЛЯ ТЕМПЕРАТУРЫ

Термометры

Эти приборы можно разделить на жидкостные, манометрические термометры, термопары, термометры сопротивления, термоиндикаторы.

Действие жидкостных термометров основано на термическом расширении жидкости, заключенной в капилляре термометра.

Их выпускают в различных модификациях для температурного диапазона 0 ... 500 °С. Изготовляют также термометры специального назначения, например электроконтактные, используемые для регулирования технологических процессов, и максимальные (минимальные), предназначенные для регистрации максимальной (минимальной) температуры в данный период.

Действие манометрических термометров основано на зависимости между температурой и давлением рабочего вещества (обычно газа), заключенного в замкнутом объеме.

 

Быстрый поиск по Банку Рефератов:     | Описание работы | Похожие работы

 

Смотрите также: Статистические методы контроля качества (Контрольная, 2000) и Задачи, функции и виды контроля (Контрольная, 2006)

 

Газовые манометрические термометры предназначены для измерения температур в пределах от -160 до +600 °С. Рабочим веществом обычно является азот.

Конденсационные (парожидкостные) манометрические термометры работают в диапазоне от -60 до +320 "С. Рабочие вещества - метилхлорид, спирт, этиловый эфир.

Жидкостные манометрические термометры используют для измерений температур в области от -160 до +320 °С (ртутные от -25 до +600 °С). Рабочая жидкость ртуть, метаксилол, силиконовые жидкости, металлы с низкой точкой плавления. Длина гибкого капилляра, соединяющего термобаллон с корпусом прибора, может достигать 60 м.

Действие термометров сопротивления основано на измерении электрического сопротивления вещества (металлов и их окислов, солей и т.д.) в зависимости от температуры.

Чувствительный элемент термометра сопротивления (обычно металлическая проволока) закреплен на каркасе из слюды или кварца и помещается в баллон для защиты датчика от окружающей среды. В зависимости от условий применения термометра баллон изготовляют из кварца, стекла, фарфора или металла.

Термометры сопротивления изготовляют из платины (ТСП), меди (ТСМ) или полупроводников. Рабочий интервал температур ТСП от -200 до +650 °С, ТСМ - от

-50 до +180 °С. Инерционность  термометров сопротивления колеблется  от 1 мин до 9 с.

Погрешность эталонных платиновых термометров сопротивления равна ±0,0001 "С при 0 "С и ±0,001 при +100 °С.

Наиболее чувствительными являются полупроводниковые термометры сопротивления. Их изготовляют в форме пластинок и сфер малого диаметра.

Как правило, чувствительный элемент остеклован для защиты от влияния среды. По сравнению с ТСП и ТСМ их габариты существенно меньше

(d = 1 ... 7 мм, 1 = 7... 13 мм).

Работа термоэлектрических термометров основана на термоэлектрическом эффекте, возникающем в термопаре. Термопарой или термоэлементом называют цепь из двух разнородных электрических проводников (термоэлектродов), концы которых соединены (сваркой, пайкой и т.п.). При наличии разности температур в местах соединения термоэлектродов в цепи генерируется термо ЭДС.

Значение ЭДС зависит только от температуры спаев и материала термоэлектродов, но не зависит от диаметра и длины проводников и распределения температуры по их длине.

Если температура одного из концов термопары постоянная (например, он погружен в воду с тающим льдом или термостабилизирован другим способом), то ЭДС зависит только от температуры ее рабочего конца. Наиболее известные материалы термоэлектродов - платина, железо, молибден, вольфрам, медь, магнанин, пла-тинородии, хромель, копель, алюмель, константан. Конструктивное оформление термопар разнообразно и должно соответствовать условиям их эксплуатации. Часто рабочие концы помещают в защитные оболочки из фарфора или другого материала.

Различают термопары со стандартными и нестандартными градуировками.

К термопарам с нестандартными градуировками относятся медьконстантовые, вольфрамрениевые, вольф-раммолибденовые и др. В основном их используют для специальных измерений, например, в диапазоне высоких температур (2500 °С для термопар типа карбид титана-графит).

Преимущества термоэлектрических термометров -линейность в широком диапазоне температур, чувствительность и стабильность показаний, простота изготовления. Недостаток - сравнительно большая постоянная времени (1 ... 10 с).

Применение микропроцессоров позволяет реалиазовать накопление и вызов максимальных и минимальных температур, вычислить скорость изменения температуры, коммутацию нескольких измерительных каналов, автокалибровку и т.д.

Волоконно-оптические термометры (ВОТ) - выполняются из кварцевого моноволокна диаметром 0,2 ... 1 мм, длиной до 100 м, на торце которого, вводимого в контролируемый объем, располагается микрокапсула с веществом, изменяющим свои оптические свойства при нагреве (люминофор, жидкий кристалл, двупреломляющийся кристалл и т.д.). На другом конце располагаются источник света (обычно светодиод) и фотодиод для регистрации излучения, огражденного от капсулы термодатчика. Достоинство ВОТ - отсутствие гальванической связи с объектом, нечувствительность к электромагнитным помехам, нетоксичность, малые габариты, высокое быстродействие.

Действие термоиндикаторов основано на изменении агрегатного состояния, яркости и цвета свечения некоторых веществ при нагреве. С их помощью можно быстро и экономично получить информацию о тепловом режиме объекта. Преимуществом термоиндикаторов является возможность запоминания распределения температур в процессе испытаний, простота и наглядность, экономичность. К недостаткам термоиндикаторов следует отнести инерционность, сравнительно невысокую точность, необходимость нанесения на изделие специальных покрытий, сложность изучения динамических температурных режимов. Включение их в системы терморегулирования представляет значительные трудности. Термохроные термоиндикаторы с химическим взимодействием компонентов (галоидные комплексные соли серебра, ртути, меди) могут вступать в реакцию с металлами, поэтому их наносят на ленты из ткани, бумаги, фольги и пр. Существуют обратимые (многократно меняющие цвет при нагреве) и необратимые термоиндикаторы этого типа.

 

Быстрый поиск по Банку Рефератов:     | Описание работы | Похожие работы

 

Смотрите также: Задачи, функции и виды контроля (Контрольная, 2006) и Расчет экономической эффективности применения тепловизионного контроля высоковольтного оборудования на примере: объектов обследованных с помощью тепловизора (Диплом, 2000)

 

Жидкокристаллические термоиндикаторы представляют собой органические соединения, одновременно обладающие свойствами жидкости (текучесть) и твердого кристаллического тела (анизотропия, двойное лучепреломление). При изменении температуры жидкий кристалл меняет свой цвет. Жидкие кристаллы эффективно используют при исследовании температур в электронных схемах для обнаружения дефектов типа нарушения сплошностей. Они выпускаются в виде пленок и жидких растворов.

Плавящиеся термоиндикаторы существуют двух типов: плавкие покрытия и термосвидетели. Покрытия выпускают в виде термокарандашей (мелков), термолаков, термотаблеток (термопорошков). Изготовляются на основе воска, стеарина, парафина или соединений серы, цинка, свинца (для высоких температур). На поверхности изделия термокарандашом наносят риску, которая плавится при достижении заданной температуры. Действие термолаков аналогично. Термосвидетели представляют собой нанизанные на тугоплавкую проволоку пластинки из металлов, плавящихся при различных температурах.

Действие люминофорных термоиндикаторов основано на температурной зависимости цвета или интенсивности люминесценции некоторых веществ, например сульфидов цинка и кадмия. Недостатком люминофорных индикаторов является необходимость точной стабилизации возбуждающего люминесценцию излучения (обычно ультрафиолетового).

Принцип действия изооптических термоиндикаторов (ИОТ) основан на эффекте Христиансена, заключающегося в рассеянии света смесью двух прозрачных (например, порошок стекла в глицерине), если показатели преломлена компонентов различны. При совпадении этих показателей для какой-либо частоты света, наблюдается селективное усиление направленного пропускания смеси. Зависимость дисперсионной характеристики некоторых органических жидкостей от температуры приводит к изменению цвета смеси в

проходящем' свете при ее нагреве. ИОТ выпускаются в виде стеклянных капсул.

Бесконтактные дистанционные измерители температуры - пирометры

Действие пирометров излучения основано на фото электрической, визуальной и фотографической регистрации интенсивности теплового излучения нагретых теп" пропорционального их температуре. Пирометры обычно имеют объектив для фокусировки излучения на фотодетектор, светофильтры и блок электронной обработки сигнала. При контроле температуры объектов в труднодоступных полостях применяют пирометры в сочетании с волоконно-оптическими световодами. Калибровка пирометров проводится по эталонным источникам [абсолютно черное тело (АЧТ), пирометрические лампы и т д.].

Яркостными пирометрами измеряют спектральную яркость объекта на определенной длине волны, которая сравнивается с яркостью АЧТ. В качестве АЧТ используется спираль специальной лампы накаливания Ярко-стные пирометры применяют для измерения высоких температур (св. 600 °С), при которых тела начинают излучать в видимой области, а интенсивность излучения достаточна для его регистрации в узком спектральном диапазоне визуально или с помощью фотоприемников типа ФЭУ, фотодиода.

Цветовыми пирометрами измеряют интенсивность излучения объекта в двух узких зонах спектра, отношение которых сравнивается с соответствующим отношением для АЧТ. Показания цветовых пирометров не зависят от коэффициента излучения объектов.

Радиационные пирометры, работающие в широком спектральном диапазоне, наиболее часто используют для измерения температуры слабонагретых тел.

Применяют объективы из материалов, прозрачных в соответствующей спектральной области. Стекло используют для измерения температур от 900 "С. Кварц применяют для регистрации температур более 400 °С. Объективы из фтористого лития или фтористого бария позволяют фиксировать температуры в диапазоне 20 ... 500 Часто используют также германиевую и зеркальную

Существенное влияние на показания радиофционного пирометра оказывает состояние поверхности контролируемого объекта, поскольку оно связано с его излучательной способностью.

Современные модели пирометров, в том числе портативных автономных, снабжаются встроенным микропроцессором, реализующим запоминание максимальной, средней и минимальной температуры за время измерения. коррекцию излучательной способности автокалибровку прибора и другие функции.

Для определения распределения температуры по поверхности объекта вдоль заданной линии развертки применяют радиационные пирометры с оптико-механической системой линейного сканирования - термопрофили.

Перед приемником могут быть установлены фильтры для исключения влияния отраженных от объектов солнечных лучей или подавления излучения объекта в диапазоне его прозрачности.

В схеме прибора предусмотрен эталонный температурный источник, уровень излучения которого поддерживается с высокой точностью. Таким образом, на детектор последовательно попадает ИК-излучение от объекта и опорного излучателя, относительная интенсивность которых сравнивается с помощью электронной схемы.

После усиления сигналы детектора, пропорциональные ИК-излучению объекта и эталонного излучения, подаются на кинескоп блока индикатора и воспроизводятся в виде яркой линии.

Информация о работе Физические основы измерения температур