Элементы проектирования электропривода

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 21:14, курсовая работа

Описание работы

Автоматизированный электропривод получил в последние десятилетия интенсивное ускоренное развитие. Это определяется, в первую очередь, общим прогрессом машиностроения, направленным на интенсификацию производственных процессов, их автоматизацию, повышение точностных характеристик, связанных с обеспечением стабильности качества производимой продукции.

Содержание работы

Введение. стр. 3

Аналитическая часть «Этапы проектирования электропривода»
Назначение электропривода стр. 4 - 6
Функции электропривода стр. 7 - 8
Этапы проектирования электропривода стр. 9 - 12
Нагрузочные диаграммы механизма и двигателя стр. 13 - 17
Тепловая модель двигателя. Стандартные режимы стр. 18 - 21
Проверка двигателей по нагреву в продолжительном
режиме стр. 22 - 26
Проверка двигателей по нагреву в повторно-
кратковременном режиме стр. 27 - 30

Практическая часть:
Разработка шифратора стр. 31 - 34
Минимизация логических выражений при помощи
карт Карно стр. 35 - 40
Проектирование дешифратора стр. 41 - 45
Синтез дешифратора для семисегментного индикатора стр. 46 - 48

Заключение стр. 49

Список используемой литературы стр. 50

Файлы: 1 файл

Курсовая работа.doc

— 3.33 Мб (Скачать файл)

Министерство образования  и науки

Государственное образовательное  учреждение

высшего профессионального  образования

«Тюменский государственный  нефтегазовый университет»

Ямальский нефтегазовый институт (филал)

 

Кафедра ЕНОТД

 

 

 

 

 

 

КУРСОВАЯ   РАБОТА

 

по ЭЛЕКТРОНИКЕ

 

на тему «Элементы проектирования электропривода».

 

 

 

 

 

Выполнила:

студентка 2 курса

специальности

«Автоматизация технологических  процессов и производств (нефтегазодобыча)

группа АТП з/с – 09

Мурдасова

Ольга Владимировна

 

 

 

 

Проверил:

доцент, к.т.н.

Латышев В.А.

 

 

 

 

 

Новый Уренгой

2011

 

 

 

СОДЕРЖАНИЕ

 

Введение.          стр. 3 

 

  1. Аналитическая часть «Этапы проектирования электропривода»           
    1. Назначение электропривода      стр. 4 - 6
    2. Функции электропривода      стр. 7 - 8
    3. Этапы проектирования электропривода    стр. 9 - 12
    4. Нагрузочные диаграммы механизма и двигателя  стр. 13 - 17
    5. Тепловая модель двигателя. Стандартные режимы  стр. 18 - 21
    6. Проверка двигателей по нагреву в продолжительном  

режиме         стр. 22 - 26

    1. Проверка двигателей по нагреву в повторно-

кратковременном режиме      стр. 27 - 30

 

  1. Практическая часть:
    1. Разработка шифратора       стр. 31 - 34
    2. Минимизация логических выражений при помощи

карт Карно         стр. 35 - 40

    1. Проектирование дешифратора     стр. 41 - 45
    2. Синтез дешифратора для семисегментного индикатора стр. 46 - 48

 

Заключение         стр. 49

 

Список используемой литературы      стр. 50

 

 

 

 

 

 

Введение

 

 

Автоматизированный  электропривод получил в последние  десятилетия интенсивное ускоренное развитие. Это определяется, в первую очередь, общим прогрессом машиностроения, направленным на интенсификацию производственных процессов, их автоматизацию, повышение точностных характеристик, связанных с обеспечением стабильности качества производимой продукции.

Вторая причина связана с наметившимся переходом от экстенсивного развития производства электрической энергии к более эффективному ее использованию. Так как использование автоматизированного регулируемого электропривода позволяет оптимизировать сами технологические процессы с целью сокращения их энергоемкости.

С другой стороны, развитие электропривода стало  возможно благодаря принципиально  новым достижениям в сфере  силовой и информационной электроники. Новые задачи в технике электропривода выступили побудительным мотивом в развитии силовой полупроводниковой техники. Создание силовых управляемых полупроводниковых приборов позволило осуществлять преобразование электрической энергии в формах, наиболее удобных для ее электромеханического преобразования, что открыло широкие возможности для создания технически совершенных регулируемых электроприводов.

Современный электропривод определяет собой  уровень силовой электровооруженности труда и является благодаря своим  преимуществом по сравнению со всеми  другими видами приводов основным и главным средством автоматизации рабочих машин и производственных процессов.

 

 

 

 

 

 

 

 

1. Аналитическая часть

1.1. Назначение электропривода

 

Электропривод - это управляемая электромеханическая система. Её назначение - преобразовывать электрическую энергию в механическую и обратно и управлять этим процессом.

Электропривод имеет  два канала - силовой и информационный (рис.1.1). По первому транспортируется преобразуемая энергия (широкие  стрелки на рис. 1.1), по второму осуществляется управление потоком энергии, а также сбор и обработка сведений о состоянии и функционировании системы, диагностика ее неисправностей (тонкие стрелки на рис. 1.1) [1-2].

 
 
Рис. 1.1. Общая структура электропривода

 

Силовой канал в свою очередь состоит из двух частей - электрической и механической и обязательно содержит связующее звено - электромеханический преобразователь.

В электрическую часть  силового канала входят устройства ЭП, передающие электрическую энергию  от источника питания (шин промышленной электрической сети, автономного электрического генератора, аккумуляторной батареи и т.п.) к электромеханическому преобразователю ЭМП и обратно и осуществляющие, если это нужно, преобразование электрической энергии.  
     Механическая часть состоит из подвижного органа электромеханического преобразователя, механических передач и исполнительного органа установки, в котором полезно реализуется механическая энергия.

Электропривод взаимодействует  с системой электроснабжения или  источником электрической энергии, с одной стороны, с технологической установкой или машиной, с другой стороны, и наконец, через информационный преобразователь ИП с информационной системой более высокого уровня, часто с человеком – оператором, с третьей стороны (рис.1.1). 
      Можно считать, что электропривод как подсистема входит в указанные системы, являясь их частью. Действительно, специалиста по электроснабжению электропривод обычно интересует как потребитель электроэнергии, технолога или конструктора машин - как источник механической энергии, инженера, разрабатывающего или эксплуатирующего АСУ, - как развитый интерфейс, связывающий его систему с технологическим процессом или системой электроснабжения.  
     Практически все процессы, связанные с механической энергией, движением, осуществляются электроприводом. Исключение составляют лишь автономные транспортные средства (автомобили, самолеты, некоторые виды подвижного состава, судов), использующие неэлектрические двигатели. В относительно небольшом числе промышленных установок используется гидропривод, еще реже - пневмопривод.  
     Столь широкое, практически повсеместное распространение электропривода обусловлено особенностями электрической энергии - возможностью передвигать ее на любые расстояния, постоянной готовностью к использованию, легкостью превращения в любые другие виды  энергии.  
     Сегодня в приборных системах используются электроприводы, мощность которых составляет единицы микроватт; мощность электропривода компрессора на перекачивающей газ станции - десятки мегаватт, т.е. диапазон современных электроприводов по мощности превышает 1012. Такого же порядка и диапазон по частоте вращения: в установке, где вытягиваются кристаллы полупроводников, вал двигателя должен делать 1 оборот в несколько десятков часов при очень жестких требованиях к равномерности движения; частота вращения шлифовального круга в современном хорошем станке может достигать 150000 об/мин.  
Но особенно широк - безгранично широк - диапазон применений современного электропривода: от искусственного сердца до шагающего экскаватора, от вентилятора до антенны радиотелескопа, от стиральной машины до гибкой производственной системы. Именно эта особенность - теснейшее взаимодействие с технологической сферой - оказывала и оказывает на электропривод мощное стимулирующее влияние. Непрерывно растущие требования со стороны технологических установок определяют развитие электропривода, совершенствование его элементарной базы, его методологии. В свою очередь, развивающийся электропривод положительно влияет на технологическую сферу, обеспечивает новые, недоступные ранее возможности.

     С энергетической точки зрения электропривод - главный потребитель электрической энергии: сегодня в развитых странах он потребляет более 60% всей производимой электроэнергии. В условиях дефицита энергетических ресурсов это делает особенно острой проблему энергосбережения в электроприводе и средствами электропривода.  
     Специалисты считают, что сегодня сэкономить единицу энергетических ресурсов, например 1т условного топлива, вдвое дешевле, чем ее добыть. Нетрудно видеть, что в перспективе это соотношение будет изменяться: добывать топливо становится всё труднее, а запасы его всё убывают.

 

 

 

 

 

 

 

 

1.2. Функции электропривода.

Рассмотрим подробнее  силовой (энергетический) канал электропривода (рис. 1.2). Будем полагать, что мощность Р передается от сети (Р1) к рабочему органу (Р2), что этот процесс управляем и что передача и преобразование мощности сопровождается некоторыми ее потерями Р в каждом элементе силового канала.  
 
Рис. 1.2. Энергетический канал

 

Функция электрического преобразователя ЭП (если он используется) состоит в преобразовании электрической энергии, поставляемой источником (сетью) и характеризуемой напряжением Uс и током Iс сети, в электрическую же энергию, требуемую двигателем и характеризуемую величинами U, I. Преобразователи бывают неуправляемыми (трансформатор, выпрямитель, параметрический источник тока) и чаще - управляемыми (мотор-генератор, управляемый выпрямитель, преобразователь частоты), они могут иметь одностороннюю (выпрямитель) или двухстороннюю (мотор-генератор, управляемый выпрямитель с двумя комплектами вентилей) проводимость. В случае односторонней проводимости преобразователя и обратном (от нагрузки) потоке энергии используется дополнительный резистор R для “слива” тормозной энергии.

     Электромеханический преобразователь ЭМП (двигатель), всегда присутствующий в электроприводе, преобразует электрическую энергию (U, I) в механическую (М, ) и обратно. Механический преобразователь (передача) - редуктор, пара винт-гайка, система блоков, кривошипношатунный механизм и т.п. осуществляет согласование момента М и скорости двигателя с моментом Мм (усилием Fм) и скоростью м рабочего органа технологической  машины [2-3]. 
     Величины, характеризующие преобразуемую энергию, - напряжения, токи, моменты (силы), скорости называют координатами электропривода. 
     Основная функция электропривода состоит в управлении координатами, т.е. в их принудительном направленном изменении в соответствии с требованиями обслуживаемого технологического процесса. Управление координатами должно осуществляться в пределах, разрешенных конструкцией элементов электропривода, чем обеспечивается надежность работы системы. Эти допустимые пределы обычно связаны с номинальными значениями координат, назначенными производителями оборудования и обеспечивающими его оптимальное использование. 
     В правильно организованной системе при управлении координатами (потоком энергии) должны минимизироваться потери Р во всех элементах и к рабочему органу должна подводиться требуемая в данный момент мощность. 
     Даже беглого взгляда на структуру силовой части электропривода (рис. 1.2) достаточно, чтобы понять, что объект изучения весьма сложен: разнородные элементы - электрические и электронные, электромеханические, механические, совсем непростые процессы, которыми нужно управлять, и т.п. Очевидно, что эффект при изучении предмета - глубокое понимание основных явлений и умение решать простые, но важные для практики задачи - может быть достигнут лишь при выполнении ряда условий.

Во-первых, надо научиться работать с моделями реальных, как правило, очень сложных объектов, т.е. с искусственными простыми объектами, отражающими тем не менее именно те свойства реального объекта, которые изучаются. 
        Во-вторых, надо стараться использовать лишь хорошие модели, отражающие то, что нужно, и так, как нужно, не избыточные, но и не примитивные.  
       В-третьих, нужно строго оговаривать условия, при которых получена та или иная модель. Если этого не сделать, результаты могут просто не иметь смысла.  
И, наконец, надо уметь выделять главное и отбрасывать второстепенное, частное.

 

 

1.3. Этапы проектирования электропривода. 

Обычно простые задачи проектирования имеют примерно следующие  формулировки: взамен устаревшего электропривода данной установки разработать современный, с лучшими техническими и экономическими показателями; взамен нерегулируемого электропривода агрегата применить регулируемый; разработать электропривод, которым можно заменить импортный, не обеспеченный запасными элементами; разработать электропривод какой-либо уникальной установки – испытательного стенда, специального транспортера и т.п. 
     Все задачи проектирования совсем не простые, поскольку могут быть решены различными, в общем случае совсем не равноценными способами, а выбор одного решения, которое и будет затем реализовываться, должен быть сделан на основе ряда критериев при учете системы конкретных ограничений.

Назовем основные этапы  инженерного проектирования. 
     Формулировка задачи – первый этап проектирования. Это точное указание того, что есть и чем это не устраивает и что и в каком смысле должно стать лучше после реализации проекта. На этом этапе не нужны детали, нужны лишь самые главные черты объекта до и после проектирования. Если этот этап выполнен плохо, очень велика опасность, что весь дальнейший труд будет потрачен впустую. 
     Анализ задачи – второй этап проектирования – выявление всех существенных качественных и количественных признаков создаваемого объекта в исходном (до проектирования) и конечном (после проектирования) состояниях, определение ограничений и назначение критериев, по которым будет оцениваться качество спроектированного объекта [4-5].                                                                                                                            Поиск возможных решений – это третий этап проектирования. Здесь в первую очередь необходимы знания, но кроме знаний нужно нестандартное мышление, умение избегать как консерватизма, так и поспешности; очень полезны аналоги, разумеется, при критическом к ним отношении, посещение выставок, чтение литературы, консультации и т.п. 
     Даже в простом случае уместно предложить несколько (много) решений, которые в принципе соответствуют задаче. Когда предлагается много решений, разумеется, не заведомо негодных, меньше шансов пропустить хорошее. 
     Выбор решения из множества возможных на основе критериев и с учетом ограничений. Это четвертый, очень ответственный этап. Здесь опять не нужны избыточные детали, кроме тех, что позволяют целенаправленно, по критериям, сравнивать решения. Здесь очень   важны верные  крупные оценки. 
     В теории проектирования вводится понятие нехудших решений, т.е. решений, попадающих в некоторую допустимую область по совокупности признаков, и формулируются алгоритмы их поиска. 
    Детальная разработка выбранного технического решения. Это пятый этап – этап окончательного выбора оборудования, расчета характеристик, составления алгоритмов управления, конструктивной компоновки узлов, оценки основных показателей и т.п. Пятый этап выполняется всегда – и в серьезных, и в учебных проектах. Однако если ему не предшествуют первые четыре или если они выполнены некачественно, нетворчески,  итоги могут быть печальными. 
     Подчеркнем, что, как и всякий творческий процесс, конкретное проектирование, даже при очень жестких ограничениях во времени, не развивается по равномерно восходящей линии – неизбежны возвраты, повторы и т.п. Характерный график процесса представлен на рис. 1.3. В хороших проектах первые четыре этапа занимают не менее 50 % всего времени – при этом создается или, точнее, может создаваться действительно новое и действительно хорошее, лучшее, чем было, решение.

Информация о работе Элементы проектирования электропривода