Цифровые компараторы

Автор работы: Пользователь скрыл имя, 13 Ноября 2014 в 22:40, курсовая работа

Описание работы

Полупроводниковые электронные устройства делятся на два больших класса: аналоговые и цифровые (дискретные). В основе классификации лежит возможность изменения в устройстве электрического сигнала, несущего информацию. Если информационный сигнал изменяется непрерывно и может принимать произвольные значения в широком диапазоне, устройство является аналоговым, если же сигнал изменяется дискретно и может принимать только два фиксированных значения, соответствующих двум цифрам двоичной системы счисления — нулю и единице, то устройство относится к цифровым или дискретным.

Файлы: 1 файл

МАЙ 90 курсовая компаратор.doc

— 485.00 Кб (Скачать файл)

Компаратор характеризуется теми же точностными параметрами, что и ОУ. Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка. [8] 

Рис. 8. Переходная характеристика компаратора А710 при различных превышениях скачка входного напряжения Uд над опорным: 1 - на 2 мВ; 2 - на 5 мВ; 3 - на 10 мВ; 4 - на 20 мВ.

5. Исследование основных схем  компаратора

Проведем исследования основных схем компараторов, построенных на базе операционных усилителей. На рис. 9 и 10 приведены схемы и виды характеристик детекторов нулевого уровня, имеющих близкое к нулю пороговое напряжение. Схемы различаются способом подачи входного сигнала на вход ОУ. Использование разных входов ОУ для подачи входного сигнала позволяет реализовать фиксацию уровня входного напряжения положительным или отрицательным перепадом напряжения на выходе компаратора.

 

Рис. 9.

 

Рис 10.

На рисунках приводится вид характеристики "выход-вход". По вертикальной оси откладывается выходное напряжение, по горизонтальной оси - входное. Наклон характеристик вызван конечной скоростью нарастания выходного напряжения. На рис. 11 и 12 приведены схемы и виды характеристик детекторов положительного и отрицательного уровней входного напряжения. Пороговый уровень входного напряжения в этих схемах задается величиной напряжения смещения, подаваемого на инвертирующий вход ОУ. Напряжение смещения может задаваться стабилитроном, как показано на рис. 13.

Рис. 11.

 

Рис. 12.

 

Рис. 13.

Максимальное и минимальное значение выходного напряжения может задаваться при помощи внешних элементов. На рис. 14 приведена схема детектора нулевого напряжения с фиксацией уровней выходного напряжения при помощи стабилитрона. Компаратор, показанный на рис. 15, позволяет фиксировать наличие входного напряжения в определенном диапазоне значений. Если входное напряжение изменяется в пределах пороговых значений, устанавливаемых внешними элементами, то выходное напряжение имеет низкий уровень. При выходе за установленные пределы пороговых значений выходное напряжение изменяется на высокий уровень. При работе с компараторами могут возникнуть неприятности, проявляющиеся в том, что вместо однократного изменения уровня выходного напряжения при достижении входным напряжением порогового значения, могут иметь место быстрые колебания между уровнями выходного напряжения, особенно в том случае, когда во входном сигнале присутствует значительный шум. При таком явлении может нарушиться нормальное функционирование некоторых типов схем. Можно избежать этого, если характеристика компаратора имеет гистерезис. Одной из схем такого рода является триггер Шмитта. Схема и её характеристика представлена на рис. 16. Для идеального ОУ, имеющего одинаковые напряжения ограничения, положительное значение входного порогового напряжения может быть вычислено по формуле [8]  :

Рис. 14.

Рис. 15.

Отрицательное значение входного порогового напряжения определяется выражением:

где Е - напряжение ограничения ОУ. Для всех рассмотренных схем анализ их работы можно осуществить по двум характеристикам. Первая из них представляет собой характеристику вход-выход и устанавливает соотношения между входным и выходным напряжением схемы в статическом режиме. Для наблюдения такой характеристики на экране осциллографа необходимо сигнал с канала, подключенного к выходу схемы, откладывать по вертикальной оси, а сигнал с канала, подключенного ко входу схемы, - по горизонтальной оси, на вход схемы подается синусоидальное напряжение. Динамику переключения выходного напряжения схемы можно проследить по осциллограммам входного и выходного напряжения. При снятии этой характеристики на вход схемы подается синусоидальное напряжение и двухлучевым осциллографом фиксируется входное и выходное напряжение. [9]

Рис. 16.

 

 

Заключение

Компаратор является измерительным прибором для сравнения измеряемой величины с эталоном (электроизмерительные потенциометры и др. приборы сравнения). Различают компараторы оптические, электрические, пневматические и др. Компараторы применяются, например, для проверки линейных мер, измерения напряженности электромагнитного поля излучателей. В картографических работах используются стереокомпараторы, в астрономии (для сравнения спектров и астрофотографий) - спектр компараторы и блинк-компараторы.

В ходе выполнения курсовой работы мы дали общую характеристику компараторам, рассмотрели их виды и  исследовали основные схемы компаратора.

 

 

Список использованной литературы

  1. Агаханян Т.М. Интегральные микросхемы. М.: Энергоатомиздат, 2013.
  2. Жеребцов И.П. Основы электроники. Л.: Энергия, 2008.
  3. Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2011 г. –368 с.
  4. Лидовский В.И. Теория информации. - М., «Высшая школа», 2012 г. – 120с.
  5. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2011 г. – 383с.
  6. Основы промышленной электроники. /Под ред. В.Г.Герасимова. М.: Высшая школа, 2009.
  7. Проектирование РЭА на интегральных микросхемах /Под ред. С.В. Якубовского. М.: Радио и связь, 2012.
  8. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. – М.: Издательский дом «Вильямс», 2013 г. – 1104 с.
  9. Справочник по интегральным микросхемам. /Под ред. Тарабрина Б.В. М.: Энергия, 2009.
  10. Степаненко И.П. Основы теории транзисторов и транзисторных схем. М.: Энергия, 2009.
  11. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2009. - 440с.
  12. Миловзоров О.В., И.Г. Панков. Электроника. М.: Высшая школа, 2008.

 

 

 


Информация о работе Цифровые компараторы