Структура микропроцессорных систем управления

Автор работы: Пользователь скрыл имя, 15 Января 2015 в 09:08, доклад

Описание работы

Объекты управления (ОУ) бытовой техники по своему назначению делятся на два класса. К первому классу относятся хорошо известные объекты, предназначенные для использования в домашних условиях: телевизоры, видеомагнитофоны и другие устройства бытовой радиоэлектронной аппаратуры (БРЭА), а также холодильники, стиральные машины, кухонные комбайны и др. Ко второму классу относятся объекты, предназначенные для оказания услуг населению в производственных условиях:промышленные стиральные машины, машины химической чистки одежды, станочное оборудование предприятий по ремонту и изготовлению мебели по заказам населения.

Файлы: 1 файл

Микропроцессоры и мкроконтролллеры.docx

— 704.53 Кб (Скачать файл)

Структура микропроцессорных систем управления.

Объекты управления (ОУ) бытовой техники по своему назначению делятся на два класса. К первому классу относятся хорошо известные объекты, предназначенные для использования в домашних условиях: телевизоры, видеомагнитофоны и другие устройства бытовой радиоэлектронной аппаратуры (БРЭА), а также холодильники, стиральные машины, кухонные комбайны и др. Ко второму классу относятся объекты, предназначенные для оказания услуг населению в производственных условиях:промышленные стиральные машины, машины химической чистки одежды, станочное оборудование предприятий по ремонту и изготовлению мебели по заказам населения.

Системы управления объектами первого класса строятся на базе одного управляющего устройства, соединенного с объектом управления несколькими каналами связи. Обобщенная структура такой системы управления показана на рис. 1. В качестве управляющего устройства системы может использоваться микропроцессорный контроллер (МК), построенный на базе микропроцессора определенного типа. Информация о состоянии объекта управления передается в микропроцессорный контроллер через блок нормирующих преобразователей (БН), коммутатор (К) и аналого-цифровой преобразователь (АЦП). Нормирующие преобразователи используются в системе для согласования уровней информационных сигналов на выходе объекта управления с уровнями входных сигналов коммутатора. Аналого-цифровой преобразователь служит для преобразования аналоговых сигналов с выхода объекта в цифровой код. После преобразования цифровой информации о состоянии объекта управления по определенному алгоритму, обычно содержащемуся в памяти МК, вырабатываются управляющие воздействия, которые поступают на вход объекта управления через цифро-аналоговый преобразователь (ЦАП) и исполнительное устройство (ИУ).

 

Рис. 1 - Структура микропроцессорной системы управления с одним объектом управления

Заметим, что если мультиплексирование входных сигналов ОУ на входе АЦП возможно практически всегда, то мультиплексирование управляющих сигналов на входе МК часто недопустимо. Такая структура управляющей системы объясняется необходимостью запоминания каждого значения управляющего сигнала после остановки вычислительного устройства.

Следует заметить, что среди выходных сигналов бытовых объектов управления аналогового типа могут быть и дискретные сигналы. Ввод таких сигналов в МК осуществляется через блок формирования сигнала (БФС), назначение которого - согласовать их уровни и мощности с входными цепями МК. При наличии нескольких дискретных сигналов для их ввода в МК можно использовать мультиплексирование. При наличии на входе объекта управления исполнительного устройства дискретного типа(ИУД) (усилители мощности, тиристорные преобразователи, работающие в ключевом режиме), управляющее воздействие формируется в МК и подается в ИУД без использования ЦАП.

Система управления может решать различные задачи:

  • поддержание на определенном уровне или изменение по определенному закону выходных параметров объекта управления;
  • программное изменение выходных параметров объекта и отслеживание их изменений в соответствии с некоторыми внешними сигналами;
  • включение или выключение потока энергии в объекты управления по времени или по заданному амплитудному значению контролируемого параметра;
  • сбор информации о состоянии объекта управления и ее обработка с сохранением результатов обработки в устройствах памяти.

Центральное место в рассматриваемой системе занимает микропроцессорный контроллер, а остальные элементы - БН, К, АЦП, ЦАП и ИУ - обеспечивают связь МК с объектом управления. Часто их объединяют одним общим названием - устройство связи с объектом (УСО). Конструктивно все элементы системы могут располагаться на одной плате, которая размещается в конструкции объекта управления. Контроллер может быть выполнен на базе определенного типа микропроцессора и нескольких микросхем подкрепления. При использовании МК как встроенного средства управления в отдельно взятые объекты технические параметры МК и УСО могут быть неунифицированными, и, следовательно, системы управления различных объектов не взаимозаменяемы. Общая стоимость автоматизированной бытовой техники при этом становится значительной.

Для снижения затрат на систему управления объектами бытового назначения возможно использование одного универсального комплекта МК и УСО, которые при необходимости могут быть подключены к любому из объектов. Такой подход к автоматизации бытовой техники особенно целесообразен, когда потребитель является обладателем бытовой ПЭВМ. Небольшим набором средств сопряжения с объектом можно обеспечить в этом случае решение многих бытовых задач, поручив управляющей ПЭВМ контроль и управление различными бытовыми процессами человека.

Объекты управления второго класса обычно объединяются в группы, которые составляют технологическую линию. Системы управления объектами этого класса могут строиться по тому же принципу, составляя совокупность одноконтурных систем управления данного уровня (рис. 2). В этом случае каждая локальная система управления одним из объектов работает независимо от других систем. При необходимости информация о состоянии объектов может быть передана в центральное вычислительное устройство для решения некоторых общих для группы объектов управляющих задач.

 

Рис. 2 - Структура микропроцессорной системы управления группой объектов управления

Те же задачи управления можно решить и с использованием Центрального МК, управляющего всей группой объектов (рис. 3). В каждой из этих систем есть свои достоинства и недостатки. В Распределенной системе управления (рис. 2) используются несколько контроллеров (по числу каналов управления). Очевидно, что стоимость такой системы будет больше, но ее надежность гораздо выше, ибо выход из строя одного МК мало отразится на технологическом процессе в целом.

Затраты на систему управления с центральным МК (рис 3) меньше, но ее надежность тоже ниже, так как в основном она определяется надежностью центрального МК.

Конечный выбор принципа управления проектируемых микропроцессорных систем зависит от многих взаимосвязанных факторов, важнейшими из которых являются стоимость, надежность, гибкость, способность работать в реальном масштабе времени. Для бытовой техники первые два показателя — стоимость и надежность — часто оказываются определяющими

 

Рис. 3 - Структура микропроцессорной системы управления группой объектов управления с центральным контроллером

 

 

 

 

 

 

 

Структура микропроцессорного контроллера.

Важнейшим звеном рассмотренных на предыдущей странице структур микропроцессорных систем является микроконтроллер, который является сложным техническим устройством, предназначенным для обработки цифровой информации. Обычно МК строится на базе выбранного типа микропроцессора, лучшим образом обеспечивающего требуемые функции микропроцессорной системы в целом. Типовая структура МК изображена на рис. 1

 

Рис. 1 - Структура микроконтроллера

Контроллер состоит из двух основных частей: ядра и модуля ввода-вывода. Ядро МК составляют микропроцессор,системный контроллер (СК) и устройства памяти. В структуре МК микропроцессор играет главную роль: осуществляет арифметическую и логическую обработку данных, поступающих от внешних устройств (ВУ) системы, и совместно с системным контроллером управляет потоками информации между всеми устройствами МС. Связь микропроцессора с объектом управления осуществляется через УСО и шины системы: шину данных (ШД), шину адреса (ША) и шину управления (ШУ). Подключение УСО к шине данных системы осуществляется через порты ввода-вывода системы, которые обычно входят в состав интерфейса системы. Интерфейс — совокупность программных и аппаратных средств, обеспечивающих обмен информацией между МП и ВУ.

Информация о состоянии объекта управления передается к МП через УСО и шину данных. По этому же направлению передаются управляющие сигналы от МП к объекту управления. Поэтому шина Данных МК двунаправленная. Ее разрядность обычно соответствует разрядности арифметико-логического устройства (АЛУ) микропроцессора и определяет диапазон представляемых двоичных цифровых чисел.

Обращение к ВУ системы осуществляется через адрес, присвоенный каждому ВУ. Адрес ВУ представляет собой цифровой двоичный код, который передается в направлении МП->ВУ. Передача адреса системы осуществляется через однонаправленную шину адреса. Разрядность ША адреса в системах с различными микропроцессорами может составлять 8, 16, 32 двоичных разряда. Чем больше разрядность ША, тем больше количество адресов можно закодировать: для n-разрядной ША объем адресного пространства системы V=2n. Для 16-разрядной ША объем адресного пространства V=216=65536=64К. Шина управления системы служит для передачи системных управляющих сигналов от МП к ВУ и в обратном направлении. Причем ШУ устроено так, что по каждому ее проводу передается управляющий сигнал только в одном направлении. Формирование системных управляющих сигналов, обеспечивающих необходимые операции между МП и ВУ, осуществляется в системном контроллере за счет использования некоторых сигналов управления МП. Поэтому СК можно считать первичным управляющим устройством системы или первичным автоматом. Важнейшей задачей первичного автомата является обеспечение правильного взаимодействия между всеми устройствами МК.

Для хранения программ и данных ядро МК содержит ОЗУ (оперативное запоминающее устройство), ПЗУ (постоянное ЗУ) и РПЗУ (репрограммируемое ЗУ). ПЗУ используется только для хранения программ управления. Эти программы, разработанные и отлаженные на специальных средствах отладки, заносятся в ПЗУ в заводских условиях, и пользователь изменять их не может. РПЗУ отличается тем, что пользователь может изменять его содержание, т.е. запрограммировать. ОЗУ используется для хранения данных, необходимых для выполнения основной программы управления. Обращение к ячейкам памяти адресное. Адреса (n — разрядные двоичные числа) выставляются на шину адреса счетчиком команд (PC) микропроцессора. Часть разрядов ША поступает непосредственно к микросхемам памяти, а остальные (старшие) разряды используются в схеме дешифрации ДШ для выборки микросхем памяти. Таким образом, каждый адрес на ША определяет позицию микросхемы и конкретную ячейку внутри нее.

Любой алгоритм управления МО реализуется управляющей программой, которая представляет собой цифровые двоичные коды, размещенные в ячейках ПЗУ. Для того чтобы определить, что должен делать МП в определенный момент времени, он должен извлечь код операции из ячейки памяти, где этот код хранится. Процедура чтения кода операции реализуется следующим образом: МП выставляет на ША адрес ячейки памяти, на ШУ формируется системный управляющий сигнал ЧТ.ЗУ (чтение памяти) и данные (содержимое ЗУ) через ШД поступают в МП. После определения кода операции происходит выполнение самой операции: либо пересылка данных между МП и ячейками памяти, либо пересылка данных между МП и ОУ. В последнем случае данные будут передаваться в направлении МП -> ШД -> модуль ввода-вывода -> УСО -> ОУ или в обратном направлении.

Особенностью управляющих контроллеров является то, что в его состав не входят средства отладки программ, так как основной набор программных модулей, составляющих библиотеку программ МК, заносится в его память в заводских условиях и изменению не подлежит. Пользователь имеет только возможность из имеющегося набора программных модулей составить конфигурацию контура направления. Для этой цели МК снабжается пультом управления, с помощью которого оператор, используя специальные команды на панели пульта управления, осуществляет выбор требуемого алгоритма управления.

Возрастающая степень интеграции цифровых микросхем определила появление в настоящее время промышленных микроконтроллеров, реализованных на одном кристалле. На кристалле такого контроллера, кроме микропроцессора, находятся модуль памяти, интерфейсные схемы и даже таймер. По сути такие контроллеры — это однокристальные ЭВМ малой производительности. Примерами перепрограммируемых однокристальных МК являются контроллеры серии К1816, К145. Разработка микропроцессорных систем на базе однокристальных МК сводится к разработке устройства сопряжения с объектом и программного обеспечения. Система команд однокристальных МК (ОМК) позволяет организовать сложную управляющую систему с большим количеством внутрипрограммных ветвлений в соответствии с целью управления и состоянием первичных преобразователей. Существующая возможность перепрограммирования ОМК и их малые габариты создают предпосылки для создания компактных встраиваемых в оборудование цифровых управляющих систем.

Структура устройства сопряжения с объектом.

Устройство сопряжения с объектом (УСО), собственно, не является принадлежностью МК, но его конкретная техническая реализация определяет, какими видами сигналов МК может обмениваться с ОУ. Конечно, конструкция ОУ и цель управления им накладывают определенные требования на конструкцию УСО. Поэтому конструкции УСО не поддаются унификации и в каждом конкретном случае возможно то или иное техническое решение. На рис. 1 изображена структура УСО применительно к гипотетическому объекту управления, который характеризуется различными сигналами на выходе и входе. УСО обеспечивает связь объекта управления с шиной данных МК с использованием интерфейсных схем Ин.Вв.

 

Рис. 1 - Структура устройства сопряжения с объектом управления

Технологические параметры объекта (температура, давление, перемещение, влажность и пр.) в первичных преобразователях (ПП) — термопарах, термометрах сопротивления, индуктивных датчиках — преобразуются в электрические сигналы (постоянное напряжение или частоту). Пройдя через блок нормирующих преобразователей БНП, обеспечивающий стандартный уровень сигнала, контролируемые параметры поступают на мультиплексор (МС), который коммутирует один из входных сигналов на единственный выход. Коммутация обеспечивается подачей цифрового кода через интерфейс вывода (Ин.Выв.) посредством программы. Скоммутированный канал подается на схему выборки и хранения (УВХ) и далее на аналого-цифровой преобразователь (АЦП), на выходе которого формируется цифровой код, пропорциональный величине контролируемого параметра. Затем цифровой код может быть считан в МП через интерфейс ввода (Ин.Вв.) и шину данных системы. Считанный цифровой код подвергается дальнейшей цифровой обработке в МП по определенному алгоритму. Если необходима индикация результата измерений, то через Ин.Выв результирующая информация может быть подана на цифровой индикатор. Если по результатам измерения необходимо воздействовать на объект, то Ин.Выв может быть использован для передачи через схему управления (Сх.У) и исполнительное устройство (ИУ)управляющего воздействия на объект. Конструкция схемы управления существенно зависит от типа исполнительного устройства. Если исполнительное устройство представляет собой, например, бесконтактное релейное устройство, обеспечивающее полное включение или выключение управляющего воздействия, то для управления на его вход достаточно подать сигнал, принимающий только два состояния: низкого или высокого уровня. Схема управления в этом случае должна выполнять функции усилителя мощности, работающего в ключевом режиме. Если же управляющее воздействие должно изменяться непрерывно, то схема управления должна преобразовать цифровой код, подступающий на ее вход из шины данных МК через интерфейс вывода, в непрерывный аналоговый сигнал необходимой мощности. Такие схемы управления обычно строятся на базе цифро-аналоговых преобразователей (ЦАП).

Информация о работе Структура микропроцессорных систем управления