Проектирование беспроводных систем

Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 14:27, курсовая работа

Описание работы

Таким образом, с появлением прототипа WiMAX-сертифицированных систем наметилась тенденция вытеснения с рынка систем WLL и отчасти LMDS. Хотя они останутся, поскольку занимают частотный диапазон выше 11 ГГц и имеют большой резерв именно в качестве распределительных систем. Широкополосные беспроводные сети передачи информации становятся одним из основных направлений развития телекоммуникационной индустрии. А для стран, в которых большая территория сочетается с невысокой плотностью населения, беспроводные сети имеют особое значение. Это особо важно для Российской Федерации, с нашей необъятной территорией и значительным разбросом населения, особенно в сельской местности.

Содержание работы

Введение 5
1. Обзор современных систем беспроводного абонентского доступа 8
1.1 Сравнение ключевых технологий WiMAX и HSPA 12
1.2 Сравнение ключевых технологий WiMAX и LTE 13
1.3 Сравнение ключевых технологий WiMAX и Wi-Fi. 16
2. Широкополосный мобильный доступ под управлением стандарта IEEE 802.16 18
2.1 Стандарт 802.16: стек протоколов. 18
2.2 Стандарт 802.16: физический уровень 19
2.3 Стандарт 802.16 протокол подуровня МАС 22
2.4 Стандарт 802.16: структура кадра 24
3. Особенности применения модемов OFDM и многостанционного доступа OFDMA 27
3.1 Особенности применения модемов OFDM. 27
3.2 MESH-сеть 36
3.3 Особенности применения многостанционного доступа OFDMA 40
3.4 Поддержка адаптивных антенных систем 49
4. Услуги и архитектура сетей Mobile WiMAX 53
4.1 Услуги сетей технологии Mobile WiMAX. 53
4.2 Принципы построения сетей WiMAX 54
4.3 Решения WiMAX с усовершенствованными функциями и рабочими характеристиками. 61
5. Разработка сети WIMAX для реализации услуг и широкополосного доступа в инернете 63
5.1 Выбор характеристик радиоинтерфейса 63
5.2 Расчет частотных каналов 65
5.3 Определения размерности кластера 66
5.4 Расчет частотных каналов, которые используются для обслуживания абонентов БС 69
5.5 Расчет допустимой нагрузки БС 69
5.6 Расчет числа абонентов, обслуживающихся одной БС 70
5.7 Расчет количества БС 70
6. Проверочный расчет помехоустойчивости для обеспечения работы сети 71
6.1 Расчет величины защитного расстояния 71
6.2 Расчет уровня сигнала на входе приемника. 71
6.3 Расчет вероятности ошибки 71
6.4 Расчет эффективности использования радиоспектра 72
7. Выбор оборудования базовых абонентских станций 73
7.1 Выбор оборудования абонентских станций 73
7.2 Выбор оборудования базовых станций 74
7.3 Установка базовых станций 77
8. Безопасность жизнедеятельности при развертывании сети 81
8.1 Особенности географического положения г. Южно-Сахалинск Сахалинской области. 81
8.2 Воздействие радиочастотного поля на организм человека 81
9. Технико-экономическое обоснование проекта 86
9.1 Краткая характеристика проекта 86
9.2 Трудоемкость выполняемых работ 86
9.3 Оценка экономической эффективности внедрения проектируемой информационной сети 93
9.4 Основные технико-экономические показатели проекта 95
Заключение 97
Список использованных источников 99

Файлы: 1 файл

Диплом.docx

— 1.35 Мб (Скачать файл)

Помехоустойчивое кодирование  в OFDMA в качестве обязательного предусматривает  только сверточный кодер – такой же, как в OFDM, и с тем же набором скоростей кодирования. Кодера Рида-Соломона нет. Опционально предусмотрено применение блоковых и сверточных турбо-кодов. Метод перемежения также практически идентичен.

В нисходящем канале первый символ –  это преамбула. Несущие в символах преамбул модулируются посредством BPSK специальным псевдослучайным кодом, зависящим от используемого сегмента (в режиме PUSC) и переменной IDcell, задаваемой на МАС-уровне [3]. В преамбуле модулируется каждая третья несущая всего канала (кроме несущих защитных интервалов и центральной), причем начальный сдвиг [0..2] задается дополнительно. Распознав тип преамбулы, АС сразу определяет значение переменной IDcell и режим работы БС.

За преамбулой следуют два символа, передающие заголовок кадра FCH и  карту распределения полей нисходящего  канала DL-MAP. Заголовок транслируется  посредством QPSK со скоростью кодирования 1/2. Он содержит префикс нисходящего  канала (DL Frame prefix), в котором указываются используемые сегменты и параметры карты нисходящего канала DL-MAP (длина, используемый метод кодирования и число повторений), транслируемой сразу за заголовком кадра. Также в заголовке используется флаг, установка которого означает изменение в расположении области конкурентного доступа в восходящем субкадре по отношению к предыдущему кадру.

Далее транслируется карта восходящего  канала UL-MAP и нисходящие пакеты данных для разных АС.

Режим FUSC означает, что используются весь диапазон физического канала (все  возможные несущие). Это 1702 несущие  информационные частоты и защитный интервал (173 и 172 несущих в верху и низу диапазона, соответственно). Центральная частота с индексом 1024 не используется.

 

Рисунок 3.6 – Совмещение различных “зон перестановки” в OFDMA-кадре

В режиме FUSC прежде всего назначаются пилотные частоты. Они подразделяются на фиксированные и переменные. Списки тех и других приведены в стандарте. Термин "переменные пилотные частоты" означает, что в каждом четном OFDMA-символе их индексы соответствуют приведенным в документе IEEE 802.16, в каждом нечетном – увеличиваются на 6 (нумерация OFDMA-символов начинается с 0). Всего предусмотрено 166 пилотных частот, из них 24 – фиксированные. И фиксированные, и переменные пилотные частоты разбиты на два набора, одинаковых по объему. Это разбиение имеет значение только при работе с адаптивными антенными системами в режиме пространственно-временного кодирования (STC).

После определения пилотных частот оставшиеся 1536 несущих предназначены для передачи данных. Они подразделяются на Nsubchannels = 32 подканала по Nsubcarriers = 48 несущих в каждом. Назначение информационных несущих подканалам происходит в соответствии с формулой:

,  (3.7),

где subcarrier(k,s) – индекс несущей k в подканале s, s = [0...Nsubchannels – 1],

 

 

– идентификатор  отдельного сегмента БС, определяемый на МАС-уровне (задаваемая базовой станцией целая переменная в диапазоне 0–31). P(x) означает х-ый элемент последовательности перестановок {P}, приведенной в стандарте (P = {3, 18, 2, 8, 16, 10, 11, 15, 26, 22, 6, 9, 27, 20, 25, 1, 29, 7, 21, 5, 28, 31, 23, 17, 4, 24, 0, 13, 12, 19, 14, 30}). Операция x mod k – это остаток от x/k.

Очевидно, что перед применением  приведенной формулы информационные несущие должны быть перенумерованы так, чтобы их индексы укладывались в диапазон 0–1535 (последнее значение соответствует физическому индексу 1702), т.е. пронумерованы подряд, без  учета пилотных частот. Поскольку в четных и нечетных символах расположение пилотных частот различно, распределение информационных несущих для них также нужно вычислять независимо.

В режиме PUSC весь доступный диапазон подразделяется на 60 подканалов. По определению, для работы используется лишь часть  из них, но не менее 12. Подканалы группируются в шести сегментах, из них три  базовых (сегменты 0, 1 и 2), каждый включает 12 подканалов (0–11, 20–31 и 40–51 подканалы, соответственно). Очевидно, исходя из требования минимума в 12 подканалов, не базовые  сегменты могут использоваться лишь совместно с базовыми. Деление на сегменты введено, чтобы БС было проще сообщать, в каких подканалах она работает (достаточно сообщить номера сегментов).

Рисунок 3.7 – Структура кластера

Символ в режиме PUSC формируется  по следующему принципу. Всего предусмотрено 2048 частот, из них центральная (с индексом 1024) и защитные (184 нижних и 183 верхних) не используются. Оставшиеся 1680 несущих последовательно разбивают на 120 кластеров, каждый содержит 14 несущих. После этого последовательные физические кластеры перенумеровываются в "логические" в соответствии с формулой LogicalCluster = RenumberingSequence [(PhysicalCluster+13 IDcell) mod 120], где RenumberingSequence (х) – соответствующий элемент приведенной в стандарте IEEE 802.16 последовательности перестановок, IDcell – определяемый на МАС-уровне идентификатор отдельного сегмента БС (задаваемая базовой станцией целая переменная в диапазоне 0–31). Эта операция фактически означает перемежение – распределение последовательных групп несущих по всему диапазону физического канала. Далее логические кластеры разбиваются на шесть групп (0–23, 24–39, 40–63, 64–79, 80–103, 104–119), по 24 и 16 кластеров. Большие группы соответствуют большим сегментам (по умолчанию, группа 0 соответствует сегменту 0, группа 2 – сегменту 1, группа 4 – сегменту 2). В каждом кластере определяются пилотные несущие – для четных символов это 5-я и 9-я несущие, для нечетных – 1-я и 13-я (рисунок 3.7).

Таким образом, набору подканалов в  пределах сегмента или нескольких сегментов  оказывается поставленным в соответствие набор несущих (для 12 подканалов – 336 несущих, из них 24 пилотные и 288 информационных). Информационные несущие в сегменте нумеруются подряд, не учитывая пилотные частоты, после чего в соответствии с формулой каждому подканалу назначаются по 24 несущих. В данном случае в формуле используются значения Nsubchannels = 12 или 8, Nsubcarriers = 24, а также специальные перестановочные последовательности P12 и P8 для сегментов из 12 и 8 каналов, соответственно (приведены в стандарте [3]).

Кроме рассмотренных методов распределения  несущих, в стандарте предусмотрены  и опциональные механизмы – в  частности, т.н. optional FUSC, принципиально не отличающийся от рассмотренного.

Восходящий канал

Восходящий субкадр следует непосредственно за нисходящим через интервал TTG. Он содержит пакеты от абонентских станций и интервал для запроса доступа/инициализации. Минимальный размер одного сообщения в восходящем субкадре (слот) – 3 OFDMA-символа в одном подканале. Это привело к появлению в документе IEEE 802.16 термина "фрагмент" (мозаичный элемент, tile).

Рисунок 3.8 – Структура “фрагмента” восходящего канала

Фрагмент представляет собой совокупность трех символов и четырех несущих, в котором положения пилотных частот жестко определены (рисунок 3.9). Весь частотный диапазон канала (1680 несущих) разбивается на 420 последовательных фрагментов, по 4 несущих в каждом. Предусмотрено 70 подканалов. Каждый из них включает 6 фрагментов – т.е. 24 несущие на символ в одном подканале. Распределение фрагментов по подканалам происходит следующим образом. Все 420 фрагментов разбиваются на 6 групп по 70 фрагментов. В каждый подканал включается по одному фрагменту из каждой группы в соответ ствии с уравнением:

,

где Tile(n, s) – фрагмент n подканала s, n = [0…5], s = [0…69];

P(x) – перестановочная последовательность;

UL_IDcell – переменная в диапазоне 0–69, задаваемая БС на МАС-уровне.

В результате каждому подканалу  в каждом символе назначается  свой набор несущих.

После распределения по подканалам происходит нумерация информационных несущих в каждом слоте – всего  их в трех символах 48. Информационные частоты в подканале нумеруются начиная с наименьшей несущей фрагмента с наименьшим индексом – сначала в первом символе, затем во втором и третьем. Затем информационные несущие в каждом слоте перенумеровываются в соответствии с формулой

,

где s – номер подканала, n = [0…47] (т.е. происходит циклический сдвиг нумерации информационных несущих на 13s в каждом подканале s).

Отметим, что в тексте документа IEEE 802.16 происходит подмена терминов: подканалом в восходящем субкадре авторы текста IEEE 802.16 называют именно слот, информационную структуру размером 24 несущих на 3 символа. И когда в документе – английским по белому – написано, что в субканале 48 информационных несущих, следует помнить, что с точки зрения правильной терминологии речь идет не о субканале, а о слоте. Реальных несущих (т.е. физических частот) в субканале всего 24. Умножая их на 3 (число OFDMA-символов в слоте) и вычитая 24 пилотные несущие, как раз и получим 48 информационных несущих.

Опционально в восходящем канале предусмотрен режим, в котором во фрагменте  одна пилотная частота (рисунок 3.9), 6 фрагментов на подканал, всего 96 подканалов (1728 используемых частот).

Механизмы запроса начальной инициализации  в сети и первичного запроса полосы пропускания в режиме OFDMA схожи  – и принципиально отличаются от других режимов. Для этих запросов в OFDMA используется специально выделенный канал. Он назначается БС и состоит  из шести последовательных подканалов, индексы которых приведены в UL-MAP. Запрос представляет собой 144-разрядный CDMA-код, передаваемый посредством BPSK, т.е. 1 бит на несущую в одном символе. В результате для передачи такого кода достаточно 6 подканалов (24 информационных несущих в каждом). Сам код формируется в генераторе ПСП – 15-разрядном сдвиговом регистре с задающим полиномом 1 + X1 + X4 + X7 + X15. Старшие 6 разрядов вектора инициализации генератора ПСП равны переменной UL_IDcell, остальные 9 – константа. Номер кода определяется начальной точкой (т.е. числом тактов генератора ПСП после инициализации) – всего предусмотрено 256 кодов. Причем БС использует только часть из всех возможных кодов – сначала N кодов начальной инициализации, за ними следуют M кодов периодического определения параметров АС, далее L кодов запроса полосы. Для каждой БС задается точка начала этой последовательности (N + M + L).

Рисунок 3.9 – Структура “фрагмента” восходящего канала в опциальном режиме

Начальная инициализация происходит так: АС, приняв дескриптор восходящего  канала и UL-MAP, определяет набор CDMA-кодов  и посылает в отведенном интервале  случайно выбранный код из группы возможных. Один и тот же код транслируется  в двух последовательных OFDMA-символах. Если длительность интервала конкурентного доступа составляет более одного слота, АС может отправить CDMA-код в четырех последовательных символах, причем коды должны быть смежными (т.е. последовательными фрагментами ПСП).

Успешно приняв и распознав CDMA-код (а этого может и не произойти, поскольку в интервале конкурентного  доступа возможны коллизии при одновременной  работе передатчиков нескольких АС), базовая  станция не знает, от какой АС пришел запрос. Поэтому в ответ в UL-MAP следующего кадра она указывает  номер принятого CDMA-кода, субканал и символ, в котором код был отправлен. Так АС определяет, что именно ее запрос принят, и понимает, что следующее за этим широковещательное сообщение с указанием диапазона запроса (номера символа, подканала и длительности) предназначено именно ей. В этом сообщении БС передает необходимые параметры для процесса инициализации в сети (включая идентификатор соединения CID, присвоенный МАС-адрес, набор физических параметров и др.). Далее в указанный в UL-MAP интервал АС приступает к штатной процедуре регистрации в сети.

Первичный запрос полосы в методе OFDMA может происходить двумя способами: посредством заголовков запроса  полосы, как и в остальных режимах, и путем посылки CDMA-кода запроса  полосы в интервале конкурентного  доступа. Посылка кода запроса полосы (равно как и кода периодического измерения параметров) происходит в  одном OFDMA-символе. Возможна и посылка  трех последовательных кодов в трех символах (какой из вариантов необходимо использовать, указывается в UL-MAP). Приняв CDMA-код, БС в UL-MAP повторяет его номер  и параметры, а также сообщает интервал для отправки заголовка  запроса полосы – уже обычным  способом.

3.4 Поддержка адаптивных  антенных систем

Важнейшая особенность стандарта IEEE 802.16, принципиально отличающая его, скажем, от стандартов IEEE 802.11 a/b/g, – это наличие встроенных средств поддержки адаптивных антенных систем (AAS). Разумеется, применение AAS – это не обязательное требование стандарта. AAS – это системы с секторными направленными антеннами (метод формирования диаграмм направленности антенн в стандарте не оговаривается), т.е. антенные системы с несколькими антенными элементами. Применение AAS существенно увеличивает потенциальную емкость сети стандарта IEEE 802.16, поскольку в разных секторах БС возможна работа в одних и тех же каналах (частотных и OFDMA). Кроме того, направленные антенны позволяют существенно уменьшать общую излучаемую мощность. В результате снижается и межканальная интерференция. Не менее важно применение многоэлементных антенных систем для улучшения прохождения сигналов в каналах с замираниями – так называемых методов пространственно-временного кодирования (разнесения) STC.

Поддержка ASS в спецификации IEEE 802.16 означает модификацию протоколов на физическом и МАС-уровнях, наличие специальных управляющих и контролирующих сообщений для работы с адаптивными антеннами.

Рисунок 3.10 – Структура кадров с зоной ААS

Стандарт  допускает в рамках одного кадра  транслировать как ненаправленный, так и направленный (посредством AAS) трафик (рис.6). Для разграничения  зон не-AAS и AAS-трафика используются специальные сообщения. Принцип применения AAS в режимах OFDM и OFDMA (равно как и в SCa) достаточно схож. Наиболее полно он описан в стандарте для случая OFDMA [3], поэтому остановимся именно на нем.

Механизм Diversity-Map Scan. В режиме OFDMA предусмотрено два метода работы с AAS – с распределенными несущими в подканале (FUSC, PUSC) и с последовательными несущими (AMC). Каждый из методов в начале AAS-зоны предусматривает передачу OFDMA-символа преамбулы AAS-зоны и заголовка с префиксом AAS-зоны. Для передачи этих сообщений в AAS-зоне нисходящего субкадра выделены специальные подканалы (два старших для FUSC/PUSC и четвертый с начала и четвертый с конца подканалы в AMC). Сообщения в этих подканалах могут повторяться несколько раз – с тем, что если используется не широковещательная трансляция, а передача с переключением лучей, сообщения с префиксом дошли бы до всех АС. В префиксе указывается код луча антенны, тип и размеры преамбулы ASS-зоны (в восходящем и нисходящем каналах), область для начальной инициализации / запросов полосы, а также области в кадре для каждого AAS-соединения. Префикс, как и в штатном режиме, передается посредством QPSK со скоростью кодирования 1/2 и двухкратным повтором (в пределах одного символа). Основное назначение префикса – сообщить АС о том, как будут переданы карты DL/UL-каналов для разделенных по направлениям лучей групп пользователей (очевидно, что распределение канальных ресурсов может происходить независимо в каждом луче).

Информация о работе Проектирование беспроводных систем