Модулированные сигналы

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 18:23, контрольная работа

Описание работы

Сигналы от измерительных датчиков и любых других источников информации передаются по линиям связи к приемникам - измерительным приборам, в измерительно-вычислительные системы регистрации и обработки данных, в любые другие центры накопления и хранения данных. Как правило, информационные сигналы являются низкочастотными и ограниченными по ширине спектра. Каналы связи, напротив, являются высокочастотными, широкополосными и рассчитаны на передачу сигналов от множества источников одновременно с частотным разделением каналов. Перенос спектра сигналов из низкочастотной области в выделенную для их передачи область высоких частот выполняется операцией модуляции.

Содержание работы

Введение.
1. Амплитудная модуляция. Однотональная модуляция. Энергия однотонального АМ-сигнала. Многотональный модулирующий сигнал. Демодуляция АМ-сигналов. Балансная амплитудная модуляция. Однополосная амплитудная модуляция. Полярная модуляция.
2. Сигналы с угловой модуляцией. Фазовая модуляция (ФМ). Частотная модуляция (ЧМ). Однотональная угловая модуляция. Спектры сигналов с угловой модуляцией. Сигналы с многотональной угловой модуляцией. Демодуляция УМ – сигналов. Квадратурная модуляция. Пример моделирования квадратурной модуляции в системе Mathcad. Демодуляция квадратурного сигнала.
3. Внутриимпульсная частотная модуляция. ЛЧМ-сигналы. Спектр прямоугольного ЛЧМ-сигнала.
4. Импульсно-модулированные сигналы. Амплитудно-импульсная модуляция. Широтно-импульсная модуляция. Временная импульсная модуляция. Кодово-импульсная модуляция.
5. Модуляция символьных и кодовых данных. Амплитудно-манипулированные сигналы. Угловая манипуляция.
Литература.

Файлы: 1 файл

Модулированные сигналы. Теория.doc

— 289.50 Кб (Скачать файл)

Однотональная угловая модуляция. Рассмотрим гармонический модулирующий сигнал с постоянной частотой колебаний ω. Начальная фаза ФМ колебаний:

j(t) = b sin Wt,

где b - индекс угловой модуляции (modulation index), которым задается интенсивность колебаний начальной фазы. Полная фаза модулированного сигнала с учетом несущей частоты ωо:

y(t) = wot + b sin Wt.

Уравнение модулированного сигнала:

u(t) = Um cos(wot + b sin Wt).                                   (15.2.4)

Мгновенная частота колебаний:

     ω(t) = dy(t)/dt = wo + bW cos Wt.

Как следует из этих формул, и начальная  фаза, и мгновенная частота изменяется по гармоническому закону. Максимальное отклонение от среднего значения ωо характеризует девиацию частоты (frequency deviation) при ФМ модуляции и равно ωd = bW = Dw. Отсюда, индекс угловой модуляции равен отношению девиации частоты к частоте модулирующего сигнала:

b = ωd/W.                                                    (15.2.5)

Для ЧМ колебаний начальная фаза сигнала определяется выражением:

j(t) = bW sin Wt,

а мгновенная частота колебаний выражением:

w(t) = wo + bW cos Wt.

Соответственно, полная фаза и уравнение модулированного сигнала:

y(t) = dw(t)/dt = wot + b cos Wt,

u(t) = Um cos (y(t)t).

Различия между частотной и  фазовой модуляцией проявляются  при изменении частоты W модулирующего сигнала.

При фазовой модуляции девиация частоты прямо пропорциональна W, а индекс угловой модуляции от частоты модулирующего сигнала не зависит:

b = const,     ωd = b W.

Напротив, при ЧМ постоянным параметром модуляции является девиация частоты, при этом индекс модуляции обратно  пропорционален частоте модулирующего  сигнала:

ωd = const,     b = ωd/W.

Спектры сигналов с угловой модуляцией.

Формулу (15.2.4) однотональной модуляции можно преобразовать к виду:

u(t) = Umcos(b×sin(Wt)) cos(wot) - Umsin(b×sin(Wt)) sin(wot).           (15.2.6)

При малых значениях индекса  угловой модуляции (b<<1, узкополосная модуляция) имеют место приближенные равенства:

cos(b×sin Wt) » 1,         sin(b×sin Wt) » b×sin wot.

При их использовании в (15.2.6), получаем:

u(t) » Umcos wot + (bUm/2) cos[(wo+W)t] + (-bUm/2) cos[(wo-W)t].               (15.2.7)

Сравнение данного выражения с  формулой АМ – сигнала (15.1.4) позволяет сделать вывод, что амплитудные спектры однотональных ФМ и ЧМ сигналов при b<<1 практически аналогичны АМ сигналам и также содержат верхнюю и нижнюю боковые частоты wo+W и wo-W. Различие заключается только в смене знака амплитуды нижней боковой частоты на минус, т.е. в дополнительном фазовом сдвиге нижней боковой частоты на 1800 относительно верхней боковой частоты. Соответственно, гармонические АМ сигналы могут быть трансформированы в ЧМ сигналы изменением на 180о начальной фазы одной из боковых полос. Заметим также, что при малых значениях индекса b основная мощность сигнала (как и в АМ) приходится на несущую частоту.

Рис. 15.2.2. Амплитуды гармоник сигналов с угловой модуляцией.




Математическая модель однотональных ЧМ и ФМ сигналов с любым значением индекса модуляции b в общем случае получается разложением функции (15.2.4) в следующий ряд:

u(t)=Um

Jk(b) cos[(wo+kW)t],

где Jk(b) – функция Бесселя k-го индекса от аргумента b. Из этого уравнения следует, что спектр сигнала содержит бесконечное число составляющих - нижних и верхних боковых колебаний, с частотами wo±kW, которые соответствуют гармоникам частоты модуляции, и с амплитудами, пропорциональными значениям Jk(b). Амплитуды пяти первых гармоник и несущей частоты при Um=1 в зависимости от индекса модуляции приведены на рис. 15.2.2.

При малой величине индекса b значимые амплитудные значения имеют только первые гармоники. С ростом величины b количество значимых боковых составляющих увеличивается, а энергия сигнала перераспределяется на боковые составляющие. Функции Бесселя имеют колебательный характер, поэтому спектр при удалении от несущей частоты ωо спадает немонотонно. На рис. 15.2.2 можно также видеть, что при определенных значениях индекса модуляции (2.405, 5.52, 8.654 и т.д.) несущая частота wo в спектре сигнала полностью отсутствует. Форма амплитудный спектров модулированных сигналов при разных индексах модуляции приведена на рис. 15.2.3.

Рис. 15.2.3. Модули спектров ЧМ сигнала при разных индексах модуляции.

(несущая частота 2500 Гц, гармоника модуляции 25 Гц, шкала  частот в Гц относительно несущей)


С ростом индекса модуляции полоса частот, занимаемая сигналом, расширяется. Практическая ширина спектра сигнала с угловой модуляцией определяется по формуле:

Ппракт = 2(b+1)W,                                              (15.2.8)

т.е. спектральными составляющими  с номерами k>(b+1) пренебрегают. Формирование реальных сигналов, как правило, выполняется при b>>1, при этом эффективная ширина спектра равна удвоенной девиации частоты:

Ппракт » 2bW = 2wd.                                            (15.2.9)

Отсюда следует, что по сравнению  с АМ – сигналами, полоса частот которых равна 2W, для передачи сигналов с угловой модуляцией требуется полоса частот, в b раз большая. С другой стороны, именно широкополосность ЧМ и ФМ сигналов обеспечивает их большую помехоустойчивость по сравнению с АМ  сигналами.

Сигналы с многотональной угловой  модуляцией отличаются еще большей сложностью спектрального состава. В их спектре присутствуют не только боковые частоты с гармониками частот модулирующего сигнала, но и боковые комбинационные частоты типа wo±W1±W2± ...Wi, со всеми возможными комбинациями частот модулирующего сигнала Wi. При непрерывном спектре модулирующего сигнала спектры ЧМ и ФМ сигналов также становятся непрерывными.

Демодуляция УМ – сигналов много сложнее демодуляции сигналов АМ.

При демодуляции записанных в ЗУ цифровых сигналов обычно используется метод формирования комплексного аналитического сигнала с помощью преобразования Гильберта:

ua(t) = u(t) + j uh(t),

где uh(t) – аналитически сопряженный сигнал или квадратурное дополнение сигнала u(t), которое вычисляется сверткой сигнала u(t) с оператором Гильберта (1/πt):

uh(t) = (1/π)

u(t') dt'/(t-t').

Полная фаза колебаний  представляет собой аргумент аналитического сигнала:

y(t) = arg(ua(t)).

Дальнейшие операции определяются видом угловой модуляции. При демодуляции ФМ сигналов из фазовой функции вычитается значение немодулированной несущей ωоt:

j(t) = y(t) - ωot.

При частотной модуляции фазовая  функция дифференцируется с вычитанием из результата значения частоты ωо:

j(t) = dy(t)/dt - ωo.

В принципе, данный метод может  применяться и в реальном масштабе времени, но с определенной степенью приближения, поскольку оператор Гильберта слабо затухает.

При демодуляции в реальном масштабе времени используется квадратурная обработка, при которой входной сигнал умножается на два опорных колебания со сдвигом фазы между колебаниями в 90о:

u1(t) = u(t) cos ωot = Um cos(ωot+j(t) cos ωot = ½ Um cos j(t) + ½ cos(2wot+j(t)),

u2(t) = u(t) sin ωot = Um cos(ωot+j(t) sin ωot = - ½ Um sin j(t) + ½ sin(2wot+j(t)).

Из этих двух сигналов фильтрами  низких частот выделяются низкочастотные колебания, и формируется аналитический сигнал:

ua(t) = ½ Um cos j(t) - ½j Um sin j(t).

Аргумент этого аналитического сигнала, как и в первом случае, представляет полную фазу колебаний, обработка которой выполняется аналогично.

Квадратурная модуляция позволяет модулировать несущую частоту одновременно двумя сигналами путем модуляции амплитуды несущей одним сигналом, и фазы несущей другим сигналом. Уравнение результирующих колебаний амплитудно-фазовой модуляции:

s(t) = u(t) cos(ωot+j(t)).

Сигнал s(t) обычно формируют в несколько  другой последовательности, с учетом последующей демодуляции. Раскроем косинус суммы и представим сигнал в виде суммы двух АМ-колебаний.

s(t) = u(t) cos ωot·cos j(t) – u(t) sin ωot·sin j(t).

При a(t) = u(t) cos j(t)  и b(t) = -u(t) sin j(t), сигналы a(t) и b(t) могут быть использованы в качестве модулирующих сигналов несущих колебаний cos ωot и sin ωot, сдвинутых по фазе на 90о относительно друг друга:

s(t) = a(t) cos ωot + b(t) sin ωot.

Полученный сигнал называют квадратурным (quadrature), а способ модуляции - квадратурной модуляцией (КАМ).

Спектр квадратурного сигнала  может быть получен непосредственно  по уравнению балансной модуляции (15.1.17) для суммы двух сигналов:

S(ω) = ½ A(ω+ωo) + ½ A(ω-ωo) – ½j B(ω+ωo) + ½j B(ω-ωo).

Демодуляция квадратурного  сигнала соответственно выполняется  умножением на два опорных колебания, сдвинутых относительно друг друга на 90о:

s1(t) = s(t) cos ωot = ½ a(t) + ½ a(t) cos 2ωot + ½ b(t) sin 2ωot,

s2(t) = s(t) sin ωot = ½ b(t) + ½ a(t) sin 2ωot - ½ b(t) cos 2ωot.

Низкочастотные составляющие a(t) и b(t) выделяются фильтром низких частот. Как и при балансной амплитудной  модуляции, для точной демодуляции сигналов требуется точное соблюдение частоты и начальной фазы опорного колебания.

Пример моделирования квадратурной модуляции в системе Mathcad.

Моделирование выполняется  в дискретной форме. 

N := 2999     n := 0 .. N     Dt := 0.001    'Интервал и шаг дискретизации (в сек).

f0 := 50     f1 := 2     f2 := 3                     'Частоты в Гц несущей, первого  и второго сигналов.

s1n := sin(2·p·f1·n·Dt)                 'Первый модулирующий сигнал (моногармоника с амплитудой 1).

s2n := sin(2·p·f2·n·Dt)                 'Второй модулирующий сигнал (моногармоника с амплитудой 1).           

b :=10     jn := b·s2n                   'Перенос информации s2n на фазу

un := s1n·cos(2·p·f0·n·Dt+jn)       'Амплитудно-фазовая модуляция

U := CFFT(u)      Df := 1/[(N+1)·Dt]             'БПФ и шаг по частоте

an := s1n·cos(jn)     bn := s1n·sin(jn)          'Формирование модулирующих сигналов

sn := an·cos(2·p·f0·n·Dt) + bn·sin(2·p·f0·n·Dt)          'Квадратурный сигнал. Сравнением с сигналом

                                                                                  'un нетрудно убедится в их идентичности,

                                                                                  'а, следовательно, идентичны и  их спектры.

Демодуляция квадратурного сигнала.

u1n := sn·cos(2·p·f0·n·Dt)      'Раздельная синхронная демодуляция сигналов an и bn. Графики

u2n := sn·sin(2·p·f0·n·Dt)       'сигналов u2n и bn смешены на -2 для представления в одном поле.

U1 := CFFT(u1)       U2 := CFFT(u2)           'Спектры сигналов, БПФ.     

M := 50/Df     m := M .. N+1-M    U1m := 0     U2m := 0     'Удаление высоких частот (после 50 Гц).

u3 := ICFFT(U1)     u4 := ICFFT(U2)     'ОБПФ оставшихся  низких частот спектра. На графиках

                                                                 'амплитуды сигналов u3n и u4n увеличены в 2 раза

                                                                 'для сопоставления c исходными сигналами an и bn.


15.3. Внутриимпульсная частотная модуляция   [1].

Сигнал с внутриимпульсной частотной модуляцией – это радиоимпульс, высокочастотное заполнение которого имеет переменную частоту.

Рис. 15.3.1. ЛЧМ – сигнал.




ЛЧМ – сигналы. Если закон изменения мгновенной частоты заполнения имеет линейный характер, то такие сигналы носят название ЛЧМ – сигналов (линейная частотная модуляция). Наиболее широкое применение они получили в радиолокации. Пример ЛЧМ – сигнала с огибающей прямоугольной формы приведен на рис. 15.3.1.

ЛЧМ – сигналы имеют одно замечательное  свойство. Если сигнал подать на частотно-зависимую линию задержки, время задержки сигнала которой велико на малых частотах (в начальной части ЛЧМ – сигнала) и уменьшается по мере нарастания частоты в ЛЧМ – сигнале, то на выходе такой линии происходит "сжатие" сигнала в один период высокочастотного колебания путем суммирования амплитудных значений всех периодов сигнала. При этом происходит увеличение амплитуды выходного сигнала и уменьшение статистических шумов, так как суммируемые одновременно по этим же периодам шумы не коррелированны.

Для модели радиоимпульса с прямоугольной  огибающей примем его длительность равной tи, а точку t = 0 поместим в центр радиоимпульса. Допустим также, что частота заполнения линейно нарастает от начала импульса к его концу со скоростью m (с-2), при этом:

w(t) = wo + mt.   (15.3.1)

Девиация частоты за время длительности импульса и полная фаза сигнала:

Dw = m×tи.                                                 (15.3.2)

  y(t) = wot + m t2/2.                                           (15.3.3)

Информация о работе Модулированные сигналы