Робототехника

Автор работы: Пользователь скрыл имя, 11 Ноября 2013 в 14:10, реферат

Описание работы

Робототе́хника (от робот и техника; англ. robotics) — прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины как электроника, механика, программирование. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

Файлы: 1 файл

робототехника.doc

— 669.50 Кб (Скачать файл)

Рассмотрим на простейших примерах применения знаний робототехники. Предлагается разработать алгоритм движения и  построить робота на логике, без  программирования, для соревнований – гонки по линии. Есть многие, кто говорит что роботы на простых логических микросхемах это не роботы. Хотя если мы составим алгоритм движения и применим для его реализации протые логические микросхемы – это и будет программа, только жестко выполненная в виде микросхемных сборок. Ведь как говорят - первый ручной компьютер был абак, то есть простые счеты.  Первый робот который хочу предложить для рассмотрения, называется  Дихотомический робот. Дихотомический робот специально разработан для прохождения трассы. Для определения положения трассы на роботе установлен всего один фототранзистор. Трасса регистрируется путём её пересечения, поэтому робот передвигается по траектории напоминающей зигзаги. Дихотомическим робот называется потому, что работает по простейшему алгоритму обработки сигнала: "1" и "0". С дихотомическим роботом можно проводить соревнования на скорость прохождения выбранной трассы. Алгоритм передвижения позволяет роботу проходить не только трассы, но и простые напечатанные лабиринты. Робот разработан и опробован совместно с сайтом  http://www.servodroid.ru ,  на котором можно найти нашу страничку.

 

 

ХАРАКТЕРИСТИКИ И ФУНКЦИОНАЛЬНОСТЬ. 
 
  

Для определения  позиции линии робот снабжён  одним фотоэлементом. Реакция робота на линию определяется путём её пересечения. Фотодатчик робота может зарегистрировать два положения на линии и вне  её. Робот называется дихотомическим, потому что имеет бинарную реакцию на положение линии относительно фотодатчика. Иначе говоря, он или видит линию или не видит. В качестве фотоэлемента определяющего положения линии установлен фототранзистор. Фототранзистор получает информацию о положении линии по отражённому инфракрасному излучению. Поэтому в конструкции робота предусмотрена регулировка интенсивности излучения подсветки трассы. Эта регулировка позволяет подстроить чувствительность фотоэлемента робота к лини трассы.   Установить оптимальную скорость передвижения по линии можно с помощью подстроечного резистора. Скорость передвижения регулируется в широком диапазоне от минимальной (несколько оборотов) до максимальной. Для оптимальной настройки скорости на печатной плате установлен подстроечный резистор. Плавное изменение скорости обеспечивается схемой шим-регулятора, когда на мотор поступают импульсы тока с установленной подстроечным резистором длительностью. Расположенные в передней части робота индикаторные светодиоды позволяют визуально контролировать реакцию робота на линию и проводить его настройку. В качестве источника питания используется алкалиновая батарейка отечественного или импортного производства напряжением 9 вольт. Источник питания размещается нестандартно и крепиться вверху на моторах. Ток потребления при напряжении источника питания 9 вольт (элемент 6F22) в среднем положении подстроечного резистора R3 составляет около 50мА. При максимальной скорости (крайнее положение R3) ток потребления составляет до 100мА.

 
Основные элементы и их функциональное назначение показано на фото.3. Расшифровка позиций даётся ниже.

 

 

  • Подстрочный резистор (12) регулирует яркость свечения инфракрасного светодиода и, следовательно, интенсивность подсветки трассы. Рекомендуется установка минимальной яркости свечения светодиода.
  • Подстрочный резистор (13) для установки скорости передвижения робота. Для прохождения лабиринта рекомендуется установка минимальной скорости. Для прохождения трассы рекомендуется установка средней или повышенной скорости. Скорость передвижения робота выбирают исходя из устойчивого прохождения трассы.

 

КОМПОНЕНТЫ КОНСТРУКЦИИ РОБОТА 

 

1.Протекторы резиновые для  увеличения сцепления с ведущими  колёсами. 
2.Колесо (ролик диаметром 12мм). 
3.Моторы типа FF-030PK. 
4.Разъёмы подключения моторов. 
5.Крепёжные п-образные скобы из канцелярских скрепок. 
6.Боковые ограничители из канцелярских кнопок. 
7.Клипса-разъём подключения источника питания. 
8.Перемычка. 
9.Выводы инфракрасного светодиода. 
10.Светодиоды красного цвета свечения. 
11.Выводы фототранзистора ФТ2К. 
12.Регулировка яркости подсветки трассы. 
13.Регулировка скорости передвижения по трассе. 
14.Выключатель питания с горизонтальной установкой. 
 
Примечание.1. Два светодиода красного цвета свечения расположенные впереди,  используются для настройки реакции робота на линию.  
Примечание.2. На валы обоих моторов необходимо надеть протекторы для нормального сцепления с ведущими колёсами.  
 
Примечание.3. Толщина стеклотекстолита не должна быть более 1,5мм в противном случае возникнут проблемы передачи усилия с протектора на ведущее колесо.                                                                        Примечание.4. Монтаж ик-светодиода и фототранзистора выполняйте со стороны токоведущих дорожек. 

 

 

 

 

ПРИНЦИП РАБОТЫ. 

Электрическая схема представлена на рис.1. Схема выполнена на интегральной микросхеме 74HC14, в состав которой входят шесть элементов-триггеров Шмитта. Микросхема питается от стабилизатора DA1, напряжением 3,3В. Это же напряжение поступает на ик-светодиоды HL1,HL2 служащие для подсветки трассы и объектов.  Фототранзистор VT1 и ик-светодиод HL1 расположены под днищем робота, с их помощью робот определяет положение трассы. После включения питания выключателем SA1 на микросхему поступит питание 3,3 вольта, а через светодиод HL1 потечёт ток. Светодиод HL1 будет излучать невидимое инфракрасное излучение. Пока светодиод HL1 находится над светлой поверхностью, ик-излучение отразится и попадёт на рабочую поверхность фототранзистора. Ток фототранзистора VT1 увеличиться, что приведёт к смене на выводе 1 элемента DD1.1 низкого логического уровня на высокий. На выводе 2 этого же элемента установится низкий логический уровень, и диод VD3 окажется запертым. Одновременно высокий логический уровень с вывода 4 элемента DD1.2 пройдёт через диод VD2 и переключит триггер DD1.3,DD1.5 в единичное состояние на выходе 10. Через резистор R8 потечёт ток, и светодиод HL4 зажжётся. Одновременно высокий уровень поступит на затвор полевого транзистора VT4 и откроет его. Мотор М2 управляемый полевым транзистором включиться и робот повернёт к чёрной линии с продвижением вперёд. В момент, когда ик-светодиод HL1 окажется над чёрной линией отражённое от неё ик-излучение перестанет отражаться (будет отражаться не значительный процент). Ток через фототранзистор VT1 уменьшится сопротивление его перехода возрастёт, на выводе 1 элемента DD1.1 высокий потенциал сменится низким. На выходе 2 элемента DD1.1 появится высокий логический уровень, который пройдёт через диод VD3 и переключит триггер DD1.3,DD1.5  в противоположное состояние. Диод VD2 будет заперт низким логическим уровнем с выхода элемента DD1.2. Теперь на выходе 10 триггера окажется низкий логический уровень. Светодиод HL4 погаснет, а транзистор VT4 закроется. На выходе 6 напротив появиться высокий логический уровень. Поэтому зажжётся светодиод HL3 и откроется транзистор VT3. Мотор M1 начинает работать, а робот будет двигаться в сторону от чёрной линии. Светодиод HL1 вновь окажется над светлой поверхностью и весь процесс повториться. 

Таким образом, положение  линии определяется путём её пересечения. Во время движения робот постоянно пересекает границу чёрный-белый для определения положения трассы. Установить оптимальную скорость передвижения по линии можно с помощью шим-регулятора. Он выполнен на элементах DD1.4,DD1.6, диодах VD1,VD4 и  резисторе R3. Подстроенным резистором R3 регулируют ширину импульсов на выходе 12 регулятора. ШИМ-сигнал поступает на затвор полевого транзистора VT5. Этот транзистор подключает отрицательный потенциал к истокам транзисторов VT3,VT4. Если ширина импульса на затворе транзистора VT5 увеличится, пропорционально возрастёт время, в течение которого открыты транзисторы VT3,VT4 и наоборот. Робот при этом будет передвигаться быстрее или медленнее в зависимости от положения подстроечного резистора R3.

 

 

       Второй вариант робота, подчиняется более сложному алгоритму, и имеет более сложную конструкцию.  ЦИФРОВОЙ МОДУЛЬ ДЛЯ LINE-РОБОТА.                                      Цифровой модуль удерживает робота при движении по линии трассы. Цифровой модуль монтируется на платформе с моторами. Особенность монтажа модуля состоит в креплении непосредственно под днищем робота. После монтажа модуля ваш робот будет передвигаться по линии нарисованной трассы. Большое количество регулировок цифрового модуля позволяет выполнить точную подстройку электрической схемы и повысить устойчивость робота при движении по трассе. На плате цифрового модуля предусмотрены следующие регулировки: скорости передвижения, чувствительности к отражённому излучению, дифференциальная чувствительность фототранзисторов. В качестве источника питания можно устанавливать как гальванические батарейки так и аккумуляторные батарейки. 

 
ХАРАКТЕРИСТИКИ И ФУНКЦИОНАЛЬНОСТЬ.

На фото.1 показана платформа-робот с установленным цифровым модулем. В состав цифрового модуля входят следующие функциональные узлы: элемента памяти на триггере, шим-регулятор скорости моторов, регулировка яркости свечения ик-светодиодов, дифференциальныйрегулятор чувствительности фототранзисторов, схема активного торможения двигателями.  
 
Элемент памяти на триггере запоминает направление схода и вырабатывает сигнал коррекции для двигателя в направлении противоположном сходу с линии. Нужно иметь ввиду, что элемент памяти работает, только пока трасса находится между фототранзисторами! Затем он выключается.

 

       

 

 

 

 

 

 

 

КОМПОНЕНТЫ КОНСТРУКЦИИ РОБОТА

 

  • Шим-регулятор позволяет регулировать скорость передвижения робота в широком диапазоне от минимальной до максимальной. Эта регулировка даёт возможность выбрать оптимальную скорость необходимую для устойчивого передвижения по трассе.
  • Подстройкой регулировки яркости свечения ик-светодиодов можно установить чувствительность одновременно обоих фототранзисторов к  отраженному излучению.
  • Дифференциальный регулятор даёт возможность уравнять чувствительность для обоих фототранзисторов, с тем, чтобы робот реагировал правильно без "перекосов” в чувствительности одного из фототранзисторов.
  • Схема активного торможения мгновенно останавливает один из моторов при условии, что соответствующий фототранзистор находится на чёрной линии. Активное торможение предотвращает холостой ход двигателя и возможный съезд робота с линии по инерции.

Примечание.1. Винтовые клеммники для подключения источника питания и моторов устанавливать необязательно. Но в этом случае их придётся запаивать непосредственно на печатную плату.

Примечание.2. Микровыключатель питания можно установить любого типа подходящего по размерам и работающий контактами на замыкание.

Примечание.3. Фототранзисторы можно заменить на фотодиоды включенные в обратном направлении. В случае замены катод фотодиода нужно подключить к плюсу питания (позиция коллектора(к) фототранзистора), анод фотодиода нужно подключить к позиции эмиттера (э) фототранзистора по рисунку на монтажной плате.

 
ПРИНЦИП РАБОТЫ. 
 

Электрическая схема представлена на рис.1. Исходное положение робота с установленным модулем, когда чёрная полоса трассы находится между фототранзисторами и не закрывает их. После включения питания, триггер на элементах DD1.1,DD1.2 устанавливается в случайное положение. Большого значения это не имеет. Транзисторы VT3,VT4 закрыты на входах триггера 1 и 6 высокий логический уровень. Когда инфракрасное излучение от светодиодов беспрепятственно отражается от светлой поверхности, то попадает в окно фототранзисторов VT1,VT2. Фототранзисторы VT1,VT2 подстроечный резистор R2 и резистор R5 образуют резистивный делитель напряжения. Изменение сопротивления делителя  в верхнем плече (по схеме) приводит к изменению уровня потенциала на базах транзисторов VT3,VT4. 

 

Если движок подстроечного резистора R2 установлен в среднем по схеме положении, то при равных (идеальных) технических характеристиках сопротивление переходов эмиттер-коллектор уменьшится на одинаковую величину. Потенциалы на левых по схеме ножках токоограничительных резисторов R3,R4 возрастёт и транзисторы VT3,VT4 откроются. Входы триггера (DD1.1,DD1.2) окажутся подключенными к минусу источника питания. В этом случае триггер будет работать как два отдельных инвертора и на его выходах 3 и 4 появятся высокие логические уровни сигнала. Транзисторы VT5,VT6 откроются и двигатели M1,M2 будут работать. Робот поедет вперёд, и будет ехать до тех пор, пока один из фототранзисторов не окажется над чёрной линией трассы. Это может произойти как вследствие геометрического поворота трассы, так и вследствие неодинаковой частоты вращения двигателей. 

 

 

Допустим левый фототранзистор (на схеме VT1) оказался над чёрной полосой трассы. Это означает, что физически робот завернул вправо от трассы. Тогда потенциал на базе транзистора VT4 падает до нуля, и транзистор закроется. На входе 6 триггера DD1.1,DD1.2 появится высокий логический уровень. А на входе 1 триггера будет низкий логический уровень, так как транзистор VT3 находится в открытом состоянии. Триггер переключится и на его выходе 4 появится низкий логический уровень. Транзистор VT6 закроется и левый двигатель M2 будет отключен. 

 

Но это ещё не всё. Для того, чтобы вал двигателя M2 не вращался по инерции в схему введён транзистор VT9. Он играет роль активного тормоза, подводя положительный потенциал к левому по схеме контакту двигателя M2. Транзистор VT9 открывается при падении логического уровня до нуля на выходе 4 триггера DD1.1,DD1.2. В этот момент транзистор VT6 уже будет закрыт. Подведение однополярного потенциала на выводы двигателя вызывает его мгновенную остановку. А физически эта схема не даёт роботу съехать за пределы чёрной трассы, каждый раз останавливая один из его моторов. И так поскольку двигатель M1 продолжает работать, а двигатель M2 остановлен , робот начинает поворачивать влево возвращаясь в положение при котором трасса находится между фототранзисторами. 

 

Аналогично работает и вторая однотипная часть схемы, но уже при съезде влево и с торможением для правого двигателя M1. Активным тормозом для двигателя M1 уже будет транзистор VT8. На элементах микросхемы DD1.3,DD1.4 выполнен шим-регулятор. Работа шим-регулятора на логических элементах подробно описана в доступной литературе. Выход регулятора 11 подключен непосредственно к полевому транзистору VT7. Нагрузочная способность полевых транзисторов серии КП505А-В до 1,5А, а в импульсе до 5,6А. Что позволяет подключать любые двигатели от детских игрушек. Диоды VD3,VD4 гасят индуктивную составляющую обмотки двигателей.

 

Перемещение ручки подстроечного  резистора R8 влево по схеме уменьшает ширину импульса на выходе шим-генератора. А перемещение вправо увеличивает ширину выходного импульса. Под действием последовательности коротких импульсов транзистор VT7 находится в открытом состоянии незначительное время. А под действием последовательности широких импульсов транзистор VT1 значительное время будет находиться в открытом состоянии. Так как транзистор VT7 коммутирует транзисторы VT5,VT6, то скорость вращения любого из двигателей будет изменяться при изменении ширины импульса на затворе транзистора VT7. Таким образом, можно установить скорость вращения обоих двигателей регулировкой подстроечного резистора R8.

Информация о работе Робототехника