Початки комбінаторики

Автор работы: Пользователь скрыл имя, 27 Февраля 2013 в 16:10, реферат

Описание работы

Принцип суми. Якщо об'єкт A можна вибрати m способами, а об'єкт B – n іншими способами, то вибір "або A, або B" можна здійснити m+n способами.
Принцип добутку. Якщо об'єкт A можна вибрати m способами і після кожного такого вибору об'єкт B може бути вибраним n способами, то вибір "A і B" в указаному порядку можна здійснити m×n способами.

Файлы: 1 файл

Pochatki_kombinatoriki.doc

— 138.50 Кб (Скачать файл)

Розглянемо окремі випадки бінома Ньютона:

при b=1 маємо (a+1)n = ,

при a=b=1 маємо (1+1)n = 2n = ,

при a= –1, b=1 маємо (–1+1)n = 0n = (–1)k.

За останньою рівністю, зокрема, природно означити 00 як 1, слідуючи за Доналдом Кнутом [****].

Запишемо біноміальні коефіцієнти  для початкових значень n=0, 1, …, 5 у трикутну таблицю:

1

1   1

1   2   1

1   3   3   1

1   4   6   4   1

1   5  10 10  5   1

З таблиці видно, що кожний елемент, який не є першим у своєму рядку, є сумою елемента над ним і  елемента, розташованого над ним  і ліворуч:

= +

Ця тотожність називається правилом додавання. Існує багато різних її доведень. Ось "лобове":

Доозначимо біноміальні коефіцієнти  при k<0 та k>n як =0. Тоді правило додавання справджується за будь-яких значень k. Скористаємося цим доозначенням також і далі, розглядаючи суми, в яких додавання ведеться за нижнім коефіцієнтом k у виразах вигляду . Це дозволить не записувати межі, у яких змінюється k.

Доведемо ще одну тотожність, яка називається згорткою Вандермонда:

.

Якщо замінити k на k-m, а n – на n-m, то одержимо рівність

.

Вона має назву тотожності Коші. Доведемо спочатку цю рівність. Нехай є r дівчат і s юнаків. Праворуч маємо кількість способів вибрати з них усіх n осіб. Кожний доданок у сумі ліворуч задає кількість способів вибрати n осіб так, щоб серед них було k дівчат з r і n-k юнаків з s. Додавання цих кількостей по всіх можливих значеннях k дає кількість всіх способів вибрати з них усіх n осіб. Отже, вирази ліворуч і праворуч задають одну й ту саму кількість, тобто рівні. Якщо тепер замінити назад k на k+m, а n на n+m, одержимо початкову рівність.

Таблиця біноміальних коефіцієнтів зображається ще у вигляді так званого арифметичного трикутника, або трикутника Паскаля:

                     1

                  1   1

               1   2   1

            1   3   3   1

            …

Розширимо поняття біноміальних коефіцієнтів на дійсні значення n. Згадаємо зв'язок між кількістю комбінацій з n елементів по k та кількістю їх розміщень без повторень: = (n)k/k!, де (n)k=n(n–1)…(n–k+1). Але останній добуток означений при будь-якому дійсному значенні n. Слідуючи Доналду Кнуту [****], замість цілого n розглянемо дійсне r: (r)k=r(r–1)…(r–k+1). Тоді за дійсних значень r означимо як (r)k/k!.

 

 


Информация о работе Початки комбінаторики