Основные понятия: свойства, упорядочивание последовательности

Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 22:20, курсовая работа

Описание работы

Древняя история богата выдающимися математиками. Многие достижения древней математической науки до сих пор вызывают восхищение остротой ума их авторов, а имена Евклида, Архимеда, Герона известны каждому образованному человеку. Иначе обстоит дело с математикой средневековья. Математика в эту эпоху развивалась чрезвычайно медленно, и крупных математиков тогда было очень мало. Тем больший интерес представляет для нас сочинение “Liber abacci” (“Книга об абаке”), написанная знаменитым итальянским математиком Леонардо из Пизы (ок. 1170-после 1228), более известный под прозвищем Фибоначчи, который был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

Файлы: 1 файл

Курсовая.doc

— 195.00 Кб (Скачать файл)

Введение

 

Древняя история богата выдающимися математиками. Многие достижения древней математической науки до сих пор вызывают восхищение остротой ума их авторов, а имена Евклида, Архимеда, Герона известны каждому  образованному человеку. Иначе обстоит  дело с математикой средневековья. Математика в эту эпоху развивалась чрезвычайно медленно, и крупных математиков тогда было очень мало. Тем больший интерес представляет для нас сочинение “Liber abacci” (“Книга об абаке”), написанная знаменитым итальянским математиком Леонардо из Пизы (ок. 1170-после 1228), более известный под прозвищем Фибоначчи, который был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В курсовой работе рассматриваются числа последовательности Фибоначчи, их свойства, а также, тесно связанный с этой темой, феномен золотого сечения, в котором большинство ученых видят одно из наиболее ярких, давно уже замеченных человеком проявлений гармонии природы. Феномен золотого сечения рассмотрен в работе в общей картине исторического становления архитектуры, на формах живой природы и за пределами предметного мира, в области гармонии и математических абстракций. Он рассмотрен и как объективная характеристика объектов искусства, экономики и т. д.

Цель курсовой работы – показать новые пути исследования природы гармонии: пути различные, основанные на рассмотрении разных объектов искусства и естествознания, но приводящие к взаимосвязанным выводам, хорошо согласованным с реальностью.

 

 

1. Основные понятия: свойства, упорядочивание последовательности

 

1.1. Свойства последовательности

 

Построим последовательность, и  назовём её трёхмерной последовательностью Фибоначчи. Эта последовательность будет состоять из множеств М1, М2, … и так далее. Множество М1 состоит всего из одной аддитивной тройки (2,1,1). Далее строим последовательность следующим образом: Если аддитивная тройка Т содержится в Мi, то её производная первым способом содержится в Мi+1, а производная вторым способом содержится в Мi+2. Кроме этого, множество М2 дополняется простейшей тройкой (1,2,1), а множество М3 – соответственно простейшей тройкой (1,1,2).

Понятно, что при этом аддитивные тройки 1 рода лежат в  множествах М1, М4, М7, …, М3k+1, …, аддитивные тройки 2 рода соответственно лежат в множествах М2, М5, М8, …, М3k+2, …, и, наконец тройки 3 рода – соответственно в множествах М3, М6, М9, …, М3k, …

Ниже представлено схематическое  изображение этой последовательности, в виде таблицы:

Таблица 1

Схематическое изображение последовательности

Мн-во

Тройки

|Mi|

M1

(2,1,1)

1

M2

(2, 3, 1)

(1, 2, 1)

2

M3

(2, 3, 5)

(2, 1, 3)

(1, 2, 3)

(1, 1, 2)

4

M4

(8,3,5)

(4,3,1)

(4,1,3)

(3,2,1)

(5,2,3)

(3,1,2)

6

M5

(8,13,5)

(4,5,1)

(4,7,3)

(5,8,3)

(3,5,2)

10

(2,7,5)

(2,5,3)

(3,4,1)

(1,4,3)

(1,3,2)

16


 

Заметим, что начиная с n=3, количество элементов во множестве Mi равняется i-тому числу из последовательности Фибоначчи, умноженному на 2. (|Mi|=2Fi).

Действительно, каждое множество  состоит из производных троек предыдущего множества, и предыдущего за ним. Поэтому его мощность равняется сумме мощностей двух предыдущих множеств. Для n³3 |Mi|=|Mi-1|+|Mi-2| (Под последовательностью Фибоначчи здесь понимается последовательность Fn, где F1=F2=1, Fi+2=Fi+1+Fi, i>1)

Номер той компоненты тройки, которая равняется сумме  двух других, соответствует остатку  при делении числа q на 3, где q – номер множества, в котором содержится данная тройка.

Свойства трёхмерной последовательности Фибоначчи

Докажем следующие две теоремы:

  1. Все числа аддитивной тройки попарно взаимно просты.
  2. Любая аддитивная тройка со взаимно простыми компонентами входит в трёхмерную последовательность Фибоначчи, причём ровно один раз.

Доказательство (Теорема 1). Посчитаем наибольший общий делитель любых двух чисел в такой тройке. По алгоритму Евклида, он равен наибольшему общему делителю в предыдущей аддитивной тройке, из которой была образована данная. Так как все такие тройки, в конечном итоге, образуются из простейших троек, в которых любые два числа взаимно просты, то в любой тройке все числа попарно взаимно просты. Теорема доказана.

Доказательство (Теорема 2). Разобьём теорему на два утверждения. Первое утверждение: «Никакая тройка в последовательности не встретится дважды». Второе утверждение: «Любая аддитивная тройка со взаимно простыми компонентами входит в трёхмерную последовательность Фибоначчи».

Обозначим за отношение между двумя числами, сумма которых образует третье число аддитивной тройки (для удобства отношения можно брать циклически, например, если сумма стоит на втором месте в тройке, то берётся отношение третьего числа к первому; а если сумма стоит на первом месте, то рассматривается отношение второго числа к третьему). Так как числа аддитивной тройки попарно взаимно просты, то λ можно считать несократимой дробью. Для конкретной тройки Ma[b] известен номер множества, в котором она содержится, значит, можно сказать, на каком месте в тройке стоит сумма. Следовательно (так как числа взаимно просты), из несократимой дроби можно восстановить исходную тройку. Поэтому далее вместо аддитивных троек мы для удобства доказательства будем писать лишь число λ. Ясно, что если было выписано число λ, то в более нижних рядах будут выписаны числа и . Теперь докажем исходные утверждения. Понятно, что производная «первым способом», то есть f(λ) даёт тройку ( ), а вторым способом, то есть g(λ), даёт тройку ( ). Зная такое число, можно определить (с учётом приведенных неравенств), с помощью какой производной оно было образовано. Действительно, если λ<1, то она образована с помощью первой производной, если λ>1, то с помощью второй. Если λ=1, то эта тройка – простейшая. Итак, для каждой аддитивной тройки мы однозначно восстанавливаем её первообразные вплоть до простейшей тройки. Если бы встретились две одинаковые тройки, то они, с учётом приведенных рассуждений, были бы образованы от одной простейшей, и стояли бы в одном множестве, а значит, совпадали. Поэтому такое невозможно. Первое утверждение доказано. С другой стороны, чтобы доказать второе утверждение, достаточно рассмотреть произвольную дробь и показать, что с помощью приведенных выше преобразований можно получить эту дробь из единицы. Это нетрудно сделать, используя алгоритм Евклида. Если дробь больше единицы,  отнимем от неё единицу. Если меньше, то разделим единицу на эту дробь. Так как числа в дроби взаимно просты, то бесконечно такие преобразования выполнять нельзя, поэтому рано или поздно мы придём к единице, а значит, такое число будет содержаться в 3-х мерной последовательности Фибоначчи.

 

1.2. Упорядочивание, вычисление элементов последовательности

 

Упорядочим элементы каждого множества следующим  образом:

Для начала, i-тый элемент множества Mk будем обозначать Мk[i].

В первом множестве находится  единственная аддитивная тройка: М1[1]= =(2,1,1).

f(Мa[b]) = Ma+1[b] (Первая производная от аддитивной тройки Мa[b] лежит в следующем множестве, но индекс аддитивной тройки сохраняется.)

g(Ma[b]) = Ma+2[b+|Ma+1|] (Вторая производная от аддитивной тройки лежит в множестве «через одно», индекс увеличивается на количество элементов в множестве Мa+1.)

Изобразим это схематически (каждая аддитивная тройка обозначена точкой).



 

 

 

 

 

 

 

 

Итак, мы упорядочили  элементы каждого множества Мi. Определим для всех a и b, для которых определена аддитивная тройка Мa[b], все три её элемента.

Для начала найдём все  тройки вида Ma[1] (тройки первого столбца). Вычисляя результаты первых троек, замечаем общую закономерность и вычисляем общий вид.

Таблица 2

 

M1[1] = (2, 1, 1) = (F3, F1, F2)

M3k+1[1] = (F3k+3, F3k+1, F3k+2)

M2[1] = (2, 3, 1) = (F3, F4, F2)

M3k+2[1] = (F3k+3, F3k+4, F3k+2)

M3[1] = (2, 3, 5) = (F3, F4, F5)

M3k[1] = (F3k, F3k+1, F3k+2)


 

Заметим, что если требуется  вычислить некоторое число из обычной последовательности Фибоначчи, возможно, с изменёнными первыми  членами, то для этого идеально подходит характеристический многочлен. Таким  образом, все аддитивные тройки первого столбца можно вычислить в общем виде.

 

 

 

 

 

 

 

 

 

 

 

2.Числа Фибоначчи

 

2.1. Теория чисел Фибоначчи: история и современность

 

Жизнь и научная карьера  Леонардо Пизанского (Фибоначчи –  сокращение от filius Bonacci – сын добродушного) теснейшим образом связана с развитием европейской культуры и науки.

В век Фибоначчи возрождение  было еще далеко, однако история  даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся  эпохи Ренессанса. Этой репетицией руководил Фридрих II, император “Священной Римской империи Германской Нации”. Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.

Столь любимые его  дедом рыцарские турниры, на которых  сражающиеся калечили друг друга  на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал  гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.

Впоследствии Фибоначчи  пользовался неизменным покровительством Фридриха II. Это покровительство  стимулировало выпуск научных трактатов  Фибоначчи: обширнейшей “Книге абака”, написанной в 1202 году, но дошедшей до нас  во втором своем варианте, который относится к 1228 г.; “Практики геометрии”(1220 г.); “Книги квадратов”(1225 г.).

В “Практике геометрии” Фибоначчи применил к решению  геометрических задач алгебраические методы. В “Книге квадрата” он решил  некоторые задачи на неопределенные квадратные уравнения.

Наибольший интерес  представляет для нас сочинение  “Книга абака”. Эта книга представляет собой объемный труд, содержащий почти  все арифметические и алгебраические сведения того времени и сыгравший  значительную роль в развитии математики в Западной Европе в течение нескольких следующих столетий.

Сообщаемый в “Книге абака” материал поясняется на большом  числе задач, составляющих значительную часть этого тракта. Рассмотрим одну из них: “Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рожают кролики со второго месяца после своего рождения”.

Ясно, что если считать пару кроликов новорожденными, то на 2-й месяц мы будем по прежнему иметь одну пару; на 3-й месяц – 1+1=2; на 4-й – 2+1=3 пары; на 5-й месяц – 3+2=5 пар (лишь два родившиеся на 3-й месяц пары дадут потомство на пятый месяц); на 6-й месяц – 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.

Таким образом, если обозначить число пар кроликов, имеющихся  на n-месяце через Fk, F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, F8=21 и т. д. причем образование этих чисел регулируется общим законом:

 

Fn=Fn-1+Fn-2

 

При всех n>2, ведь число  пар кроликов на n-м месяце равно  числу Fn-пар кроликов на предшествующем месяце плюс число вновь родившихся пар, которое совпадает с числом Fn-2 пар кроликов, родившихся на (n-2) – ом месяце.

Информация о работе Основные понятия: свойства, упорядочивание последовательности