Методы и модели игры

Автор работы: Пользователь скрыл имя, 03 Декабря 2012 в 21:46, курс лекций

Описание работы

Рассмотрим игру, в которой участвуют два игрока, причем каждый из игроков имеет конечное число стратегий. Обозначим для удобства одного из игроков через А, в другого — через В.
Предположим, что игрок А имеет m стратегий — А1, А2, ..., Аm, а игрок В имеет n стратегий В1, В2, ..., Вn.
Пусть игрок А выбрал стратегию Ai, а игрок В стратегию Вk. Будем считать, что выбор игроками стратегий Ai и Вk однозначно определяет исход игры — выигрыш аik игрока А и выигрыш bik игрока В, причем эти выигрыши связаны равенством

Содержание работы

Часть I МАТРИЧНЫЕ ИГРЫ 59
1. Равновесная ситуация 60
2. Смешанные стратегии 65
Основные определения 65
Основная теорема матричных игр 68
Основные свойства оптимальных смешанных стратегий 68
3. Методы решения матричных игр 69
Итерационный метод решения матричных игр 77
Сведение матричной игры к задаче линейного программирования 79
4. Примеры задач, сводимых к матричным играм 81
Несколько слов в заключение 84
6. О классификации игр 85
Часть II ПОЗИЦИОННЫЕ ИГРЫ 86
1. Структура позиционной игры 86
2. Нормализация позиционной игры 88
3. Позиционные игры с полной информацией 97
Несколько слов в заключение 100
3.6 Принятие решений и теория игр. Примеры. 101
3.6.1. Оптимальное решение игры двух лиц с нулевой суммой 102
Упражнения 3.6,а 103
3.6.2. Решение матричных игр в смешанных стратегиях 105
Упражнения 3.6,b 107
Упражнений 3.6,с 110
3.7. Заключение 111
Литература 112
Комплексные задачи 112

Файлы: 1 файл

методы и модели игры 32.doc

— 1,021.50 Кб (Скачать файл)

Пояснение. Выбирая стратегию Вk, игрок В должен рассчитывать на то, что в результате разумных действий противника (игрока А) он проиграет не больше чем βk.

2-й шаг. Среди чисел

β1, β2, … , βn

выбирается минимальное число

или, подробнее,

Выбранное число β также является одним из элементов заданной матрицы А.

 

Пояснение. Действуя наиболее осторожно и рассчитывая на наиболее разумное поведение противника, игрок В должен остановиться на той стратегии Вk*, для которой число βk является минимальным.

 

Если игрок В будет придерживаться стратегии, выбранной описанным выше способом, то при любом поведении игрока А игроку В гарантирован проигрыш, не боль 
ший β.

Число β называется верхней ценой игры.

Принцип построения стратегии игрока B, основанный на минимизации максимальных потерь, называется принципом минимакса, а выбираемая в соответствии с этим принципом стратегия Bk0 – минимаксной стратегией игрока В.

Нижняя цена игры α и верхняя цена игры β всегда связаны неравенством

 

Замечание. Реализация описанного алгоритма требует 2mn - 1 сравнений элементов матрицы А:

(n - 1)m + m - 1 = mn - 1

сравнений для определения α,

(n - 1)m + m - 1 = mn - 1

сравнений для определения β и одно сравнение полученных чисел α и β.

 

Если

,

или, подробнее,

,

то ситуация {Аi0, Вk0} оказывается равновесной, и ни один из игроков не заинтересован в том, чтобы ее нарушить (в этом нетрудно убедиться путем рассуждений, подобных проведенным при анализе игры в примере 2).

В том случае, когда нижняя цена игры равна верхней цене игры, их общее значение называется просто ценой  игры и обозначается через ν.

Цена игры совпадает с элементом матрицы игры А, расположенным на пересечении i0-й строки (стратегия игрока А) и k0-го столбца (стратегия игрока В) – минимальный в своей строке и максимальный в своем столбце.

Этот элемент называют седловой точкой матрицы А, или точкой равновесия, а про игру говорят, что она имеет седловую точку.

Стратегии и , соответствующие седловой точке, называются оптимальными, а совокупность оптимальных ситуаций и цена игры – решением матричной игры с седловой точкой.

 

Замечание. Седловых точек в матричной игре может быть несколько, но все они имеют одно и то же значение.

 

Матричные игры с седловой точкой важны и интересны, однако более  типичным является случай, когда применение описанного алгоритма приводит к неравенству

.

Как показывает следующий пример, в этом случае предложенный выбор  стратегий уже, вообще говоря, к равновесной  ситуации не приводит, и при многократном ее повторении у игроков вполне могут возникнуть мотивы к нарушению рекомендаций, основанных на описанном алгоритме действий игроков А и В.

Пример 3. Рассмотрим 3 x 3 игру, заданную матрицей

.

Применив предложенный алгоритм

4

1

-3

-3

-2

1

3

-2

0

2

-3

-3

4

2

3

 

 

находим нижнюю цену игры α = -2 и соответствующую ей стратегию А2, верхнюю цену игры β = 2 и соответствующую ей стратегию B2.

Нетрудно убедиться в том, что  пока игроки придерживаются этих стратегий, средний выигрыш при многократном повторений игры равен 1. Он больше нижней мены игры, но меньше верхней цены.

Однако если игроку В станет известно, что игрок А придерживается стратегии А2, он немедленно ответит стратегией В1 и сведет его выигрыш к проигрышу -2. В свою очередь, на стратегию В1 у игрока А имеется ответная стратегия А1, дающая ему выигрыш 4.

Тем самым, ситуация { А2, В2} равновесной не является.

 

2. Смешанные  стратегии

В случае, когда нижняя цена игры α и верхняя цена игры β не совпадают,

,

игрок А может обеспечить себе выигрыш, не меньший α, а игрок В имеет возможность 
не дать ему больше, чем β. Возникает вопрос – а как разделить между игроками разность

Предыдущие построения на этот вопрос ответа не дают — тесны рамки возможных действий игроков. Поэтому довольно ясно, что механизм, обеспечивающий получение каждым из игроков как можно большей доли этой разности, следует искать в определенном расширении стратегических возможностей, имеющихся у игроков изначально.

Оказывается, что компромиссного распределения разности между игроками и уверенного получения каждым игроком своей доли при многократном повторении игры можно достичь путем случайного применения ими своих первоначальных, чистых стратегий. При таких действиях

    • во-первых, обеспечивается наибольшая скрытность выбора стратегии (результат выбора не может стать известным противнику, поскольку он неизвестен самомуигроку),
    • во-вторых, при разумном построении механизма случайного выбора стратегий, последние оказываются оптимальными.

Случайная величина, значениями которой  являются стратегии игрока, называется его смешанной стратегией.

Тем самым, задание смешанной  стратегии игрока состоит в указании тех вероятностей, с которыми выбираются его первоначальные стратегии.

 

Основные  определения

Рассмотрим произвольную m х n игру, заданную m х n-матрицей

Так как игрок А имеет m чистых стратегий, то его смешанная стратегия может, быть описана набором m неотрицательных чисел

сумма которых равна 1,

.

Смешанная стратегия второго игрока В, имеющего п чистых стратегий, описывается набором п неотрицательных чисел

сумма которых равна 1,

.

 

Замечание. Каждая чистая стратегия является частным случаем смешанной стратегии: в частности, чистая стратегия Ai является смешанной стратегией, описываемой набором чисел Рев котором p1, p2, … , pm, в котором

 

Подчеркнем, что для соблюдения секретности каждый из игроков применяет  свои стратегии независимо от другого  игрока.

Таким образом, задав два набора

    

мы оказываемся в ситуации в смешанных стратегиях. В этих условиях каждая обычная ситуация (в чистых стратегиях) {Аi, Bk} по определению является случайным событием и, ввиду независимости наборов Р и Q, реализуется с вероятностью piqk. В этой ситуации {Аi, Bk} игрок А получает выигрыш aik. Тем самым, математическое ожидание выигрыша игрока А в условиях ситуации в смешанных стратегиях (Р, Q) равно

.

Это число и принимается за средний выигрыш игрока А при смешанных стратегиях

   

 

Определение. Стратегии

   и  

называются оптимальными смешанными стратегиями игроков А и В соответственно, если выполнено следующее соотношение

.

 

Пояснение. Выписанные неравенства означают следующее:

левое неравенство – отклонение игрока А от оптимальной стратегии Р0 при условии, что игрок В придерживается стратегии Q0, приводит к тому, что выигрыш отклонившегося игрока А может только уменьшиться,

правое неравенство – отклонение игрока В от оптимальной стратегии Q0 при условии, что игрок А придерживается стратегии Р0, приводит к тому, что выигрыш игрока А может только возрасти, и значит, выигрыш игрока В – только уменьшиться.

 

Приведенное условие оптимальности  равносильно тому, что1

Величина

,

определяемая последней формулой, называется ценой игры.

Набор (Р0, Q0, ν), состоящий из оптимальных смешанных стратегий игроков А и В и цены игры, называется решением матричной игры.

 

Пример 4. Рассмотрим 2 x 2 матричную игру из примера 1. Матрица этой игры имеет следующий вид

.

Как нетрудно убедиться, седловой точки  у нее нет.

Смешанные стратегии игроков А и В могут быть описаны парами чисел

P = {p, 1 - p}   и   Q = {q, 1 - q}

соответственно.

Средний выигрыш игрока А вычисляется так

?

откуда легко следует, что

Последнее удобно записать так

.

 

Рис. 1

Полученная формула показывает, что если игрок А в половине случаев записывает на листе бумаге четное (нечетное) число (выбирает р = 1/2), то независимо от того, что делает игрок В, ожидаемый (средний) выигрыш игрока А в каждой партии будет нулевым.

Если же игрок А выберет р > 1/2 (так что разность р-1/2 будет положительной), то узнав об этом, игрок В может выбрать q < 1/2 (так что разность q - 1/2 будет отрицательной) и, тем самым, сделать средний выигрыш игрока А отрицательным, то есть заставит его проиграть. Если же игрок А выберет р < 1/2 (так что разность р -1/2 будет отрицательной) и игрок В узнает об этом, то он может выбрать q > 1/2 (так что разность q -1/2 будет положительной) и вновь сделать выигрыш игрока А отрицательным, то есть опять заставит его проиграть.

Исследуем теперь эту формулу  с точки зрения игрока В.

Если игрок А выбирает р = 1/2, то ожидаемый (средний) выигрыш игрока B независимо от его действий будет нулевым в каждой партии. Но если игрок В выберет q > 1/2 (так что разность q - 1/2 будет положительной), то, узнав об этом, игрок А может выбрать р < 1/2 (так что разность р - 1/2 будет отрицательной), и тогда игрок В будет проигрывать в каждой партии. Если же игрок В выберет q < 1/2 (так что разность q -1/2 будет отрицательной) и игрок А узнает об этом, то он может выбрать р > 1/2 (так что разность р -1/2 будет положительной) и вновь заставит игрока В проиграть.

Тем самым наборы

,

является оптимальными, а исход  игры ничейным:

ν = 0.

Замечание. На рисунке 1 показано, как устроена поверхность, описываемая функцией

Точка

является седловой точкой (точкой перевала) этой поверхности.   Именно эта точка и дает решение рассматриваемой  матричной игры.

 

Естественно возникают два ключевых вопроса:

1-й – какие матричные игры  имеют решение в смешанных  стратегиях?

2-й – как находить решение  матричной игры, если оно существует?

Ответы на эти вопросы дают следующие две теоремы.

Основная  теорема матричных игр

Теорема 1 (Дж. фон Нейман). Для матричной игры с любой матрицей А величины

 

равны между собой,

Более того, существует хотя бы одна ситуация в смешанных стратегиях (Р0, Q0), для которой выполняется соотношение

Иными словами, любая матричная  игра имеет решение в смешанных  стратегиях. Поиск этого решения опирается на следующие установленные факты. 

Основные  свойства оптимальных смешанных  стратегий  

 

Теорема 2. Пусть

 и 

- оптимальные смешанные стратегии  и ν – цена игры,

Оптимальная смешанная стратегия Р0 игрока А смешивается только из тех чистых стратегий Аi, i = 1, 2,..., m, то есть отличными от нуля могут быть вероятности pi

только с теми номерами i = 1,2, ... , m, для которых выполнены равенства

.

Это означает, что смешиваются не все чистые стратегии. Аналогично, в  оптимальной смешанной стратегии Q0 игрока В отличных от нуля могут быть только те вероятности qk, для номеров k = 1,2, ... , n, которых выполнены равенства

.

Кроме того, имеют место соотношения

.

В этом последнем скоплении равенств, по существу, и лежат истоки, питающие методы построения решений матричных  игр. Опишем простейшие из них.

 

 

3. Методы решения  матричных игр

Наши рассмотрения мы начнем с матричных  игр, число стратегий хотя бы одного из игроков в которых равно  двум.

Для построения решений 2 х n и m х 2 игр существует эффективный метод, основанный на простых геометрических соображениях. Этот метод, называют графическим.

Информация о работе Методы и модели игры