Логические элементы

Автор работы: Пользователь скрыл имя, 07 Августа 2013 в 05:33, контрольная работа

Описание работы

Логическими элементами называются элементы, выполняющие логические операции И, ИЛИ, НЕ и комбинации этих операций. Указанные логические операции можно реализовать с помощью контактно-релейных схем и с помощью электронных схем. В настоящее время в подавляющем большинстве применяется электронные логические элементы, причем электронные логические элементы входят в состав микросхем. Имея в распоряжении логические элементы И, ИЛИ, НЕ, можно сконструировать цифровое электронное устройство любой сложности. Электронная часть любого компьютера состоит из логических элементов.

Файлы: 1 файл

C25EE12D.tmp.doc

— 210.50 Кб (Скачать файл)

 
Глава 1. КОМБИНАЦИОННЫЕ СХЕМЫ И ЦИФРОВЫЕ АВТОМАТЫ

 

 

1.1.  Логические элементы

 

Различают комбинационные схемы и  цифровые автоматы. В комбинационных схемах состояние на выходе в данный момент времени однозначно определяется состояниями на входах в тот же момент времени. Комбинационными схемами, например, являются логические элементы И, ИЛИ, НЕ и их комбинации. В цифровом автомате состояние на выходе определяется не только состояниями на входах в данный момент времени, но и предыдущим состоянием системы. К цифровым автоматам относятся триггеры.

 

Логическими элементами называются элементы, выполняющие логические операции И, ИЛИ, НЕ и комбинации этих операций. Указанные логические операции можно  реализовать с помощью контактно-релейных схем  и с помощью электронных схем. В настоящее время в подавляющем большинстве применяется электронные логические элементы, причем электронные логические элементы входят в состав микросхем. Имея в распоряжении логические элементы И, ИЛИ, НЕ, можно сконструировать цифровое электронное устройство любой сложности. Электронная часть любого компьютера состоит из логических элементов.

 

Система простых логических функций, на основе которой можно получить любую логическую функцию, называется функционально полной.

 

 

 

 Отсюда следует, что для построения логического устройства любой сложности достаточно иметь однотипные логические элементы, например, И-НЕ  или ИЛИ-НЕ.

 

Логические элементы могут работать в режимах положительной и  отрицательной логики. Для электронных  логических элементов в режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю - низкий уровень напряжения. В режиме отрицательной логики логической единице соответствует низкий уровень напряжения, а логическому нулю - высокий.

 

Для контактно-релейных схем в режиме положительной логики логической единице  соответствует замкнутый контакт  ключа или реле, а логическому  нулю - разомкнутый. Светящийся индикатор (лампочка, светодиод) соответствует  логической единице, а несветящийся - логическому нулю.

 

Логические элементы, реализующие  для режима положительной логики операцию И, для режима отрицательной  логики выполняют операцию ИЛИ, и  наоборот. Так, например, микросхема, реализующая  для положительной логики функции  элемента 2И-НЕ, будет выполнять для отрицательной логики функции элемента 2ИЛИ-НЕ.

 

Как правило, паспортное обозначение  логического элемента соответствует  функции, реализуемой "положительной  логикой". Логические элементы И, ИЛИ, НЕ  имеют один выход, число входов логических элементов  И, ИЛИ  может быть любым начиная с двух. Логические элементы И и ИЛИ, выпускаемые в составе микросхем, обычно имеют  2, 3, 4, 8 входов. В названии элемента первая цифра указывает число входов.

 

Прежде всего, рассмотрим реализацию логических элементов с помощью контактно-релейных схем. Рассмотрим логический элемент  2И. Он выполняет операцию логического умножения. На рисунке 1.1,а приведена контактно-релейная схема логического элемента 2И для режима положительной логики.

 

 

 

Обозначение логического элемента 2И на принципиальных схемах  показано на рисунке 1.1,б. Знак  & (амперсант) в левом верхнем углу прямоугольника  указывает, что это логический элемент И. Первые две буквы обозначения  DD1.2  указывают на то, что это цифровая микросхема, цифра слева от  точки указывает номер микросхемы на принципиальной схеме, а цифра справа от точки – номер логического элемента в составе данной микросхемы.

 

Функционирование логического  элемента обычно задают  таблицей  истинности. Контактно-релейная схема логического элемента 2И (режим положительной логики) позволяет легко составить таблицу истинности этого элемента. Так как микросхема имеет для подачи входных сигналов два входа, то возможны  22=4 различных комбинации входных сигналов. Необходимо проанализировать состояние лампочки при различных положениях тумблеров Sa1, Sa2, т.е. рассмотреть 4 различных комбинации состояний тумблеров (рис. 1.1,в).  

 

Введение понятия активного  логического уровня существенно  облегчает анализ функционирования сложных цифровых устройств. Активным логическим уровнем на входе элемента (логический нуль, логическая единица) называется такой уровень, который однозначно задает состояние на выходе элемента независимо от логических уровней на остальных входах элемента. Активный логический уровень на одном из входов элемента определяет уровень на его выходе. Уровни, обратные активным, называются пассивными логическими уровнями.

 

Активным логическим уровнем для  элементов И является логический нуль. Пусть, например, имеем логический элемент 8И.  Необходимо проанализировать 28=256 различных состояний для составления таблицы истинности этого элемента. Воспользуемся понятием активного логического уровня. Если хотя бы на одном из входов этого элемента будет активный логический уровень, то состояние на выходе элемента определено однозначно и нет необходимости анализировать состояния на остальных входах элемента.

 

 Таким образом, таблицу истинности  логического элемента 8И можно  свести к двум строчкам: на  выходе этого элемента будет  логическая единица, если на всех входах будут сигналы логической единицы и на выходе будет логический нуль, если хотя бы на одном из входов элемента будет сигнал логического нуля.

 

Логический элемент 2ИЛИ выполняет  логическую операцию логического сложения  у=х1+х2. Контактно-релейная схема элемента приведена на рисунке 1.2,а, а его условное обозначение – на рисунке 1.2,б. Знание контактно-релейной схемы элемента позволяет составить таблицу истинности (рис.1.2,в). Лампочка будет гореть, если замкнуты контакты хотя бы одного тумблера, т.е. активным логическим уровнем для элементов ИЛИ является уровень логической единицы.

 

Логический элемент НЕ выполняет  операцию отрицания, и для этого  элемента проще составить сразу  таблицу истинности, а не вычерчивать  сначала контактно-релейную схему, а затем по ней составлять таблицу истинности. Для логических элементов И и ИЛИ проще сначала вычертить контактно-релейную схему, а уже потом составлять таблицу истинности.

 

 

 

Напомним алгоритм работы электромагнитного  реле с нормально замкнутыми контактами: при отсутствии электрического тока через обмотку реле контакты реле замкнуты, а при протекании достаточного тока через обмотку реле контакты реле разомкнуты. Контактно релейная схема элемента НЕ приведена на рисунке 1.3а, а его условное обозначение – на рисунке 1.3б.

 

 

 

Проанализируем работу контактно-релейной схемы логического элемента НЕ (рис. 1.3а). Если контакты ключа Sa1 разомкнуты, то через обмотку К электромагнитного  реле ток протекать не будет. Контакты К1.1 (цифра слева от точки указывает номер реле на принципиальной схеме, а цифра справа  – номер контактной группы данного реле) будут замкнуты (электромагнитное реле с нормально замкнутыми контактами). Электрическая лампочка HL1 в этом случае будет гореть, что для режима положительной логики будет означать логическую единицу. При замкнутых контактах ключа Sa1 (на входе элемента логическая единица) через обмотку реле протекает ток, достаточный для размыкания контактов К1.1,  поэтому лампочка перестает гореть (логический нуль). В результате анализа мы получили, что сигнал на выходе элемента противоположен сигналу на входе, т.е. если на входе элемента сигнал логической единицы, то на выходе элемента сигнал логического нуля и наоборот (рис. 1.3,в).

 

При анализе работы логических элементов следует помнить о режиме их работы (режим положительной или отрицательной логики). Логические элементы, реализующие для режима положительной логики операцию И, для

 

режима отрицательной логики выполняют  операцию ИЛИ и наоборот.  Решим  следующую задачу.

 

Задача. Какую логическую операцию выполняет контактно-релейная схема, приведенная на рисунке 1.4.

 

 

 

Правильным ответом в этой задаче будет следующий. Указанная контактно-релейная схема выполняет операцию 3И для  режима положительной логики и 3ИЛИ  для режима отрицательной логики (решение обосновать самостоятельно).

 

В практической работе широко используются комбинации логических элементов и  особенно элементы И-НЕ и ИЛИ-НЕ. Рассмотрим подробнее контактно-релейную схему  элемента 2ИЛИ-НЕ, приведенную на рисунке 1.5,а. Условное обозначение элемента на принципиальных схемах показано на рисунке 1.5,б. Заполним таблицу истинности, приведенную на рисунке 1.5в. Если оба ключа разомкнуты (Х1=0, Х2=0), то лампочка HL1 горит, что соответствует логической единице на выходе элемента (Y=1). Замкнем контакты ключа Sa1 (Х1=1), оставляя ключ Sa2 разомкнутым (Х2=0). Лампочка HL1 в этом случае не горит (Y=0). Если замкнут хотя бы один ключ, то лампочка не горит. Следовательно, активным логическим уровнем на входе элемента ИЛИ-НЕ является уровень логической единицы.

 

 

 

Для двух аргументов логического элемента возможны 16 логических функций. В данном пособии рассматриваются логические функции: логическое И, логическое ИЛИ, логическое НЕ, логическое И-НЕ, логическое ИЛИ-НЕ, сумма по модулю 2.

 

В таблице 1.1 приведены условные обозначения  элементов 2И, 2ИЛИ, НЕ, 2И-НЕ, 2ИЛИ-НЕ, исключающее  ИЛИ (сумма по модулю 2), условные обозначения  выполняемых этими элементами логических операций, таблицы их истинности и  контактно-релейные схемы. При анализе контактно-релейной схемы элемента исключающее ИЛИ необходимо учитывать, что положения переключателей SA1 и SA2 в таблице 1.1 соответствуют логическим единицам (верхнее положение подвижного контакта переключателя соответствует логической единице), т.е. Х1=1 и Х2=1. Лампочка HL1 горит лишь в том случае, когда подвижный контакт одного из переключателей находится в верхнем положении, а подвижный контакт второго переключателя в нижнем положении. Из анализа работы данной контактно-релейной схемы получаем таблицу истинности элемента исключающее ИЛИ.

 

 

 

Рассмотрим решение следующей  задачи: имея в распоряжении логические  элементы 2И-НЕ, сконструировать устройство,  реализующее операцию  3ИЛИ-НЕ для  режима положительной логики. Эту  задачу решим в  два этапа. Сначала сконструируем устройство, выполняющее операцию 3И-НЕ для режима положительной логики (рис. 1.6,а), а потом на входах и выходе элемента 3И-НЕ установим логические элементы НЕ (рис. 1.6,б).

 

 

 

По мере развития вычислительной техники  электронные логические элементы совершенствовались. Рассмотрим принципиальную схему логического элемента 2И (рис. 1.7,а), построенного на диодах и резисторах. Для простоты рассмотрения будем считать, что напряжение  логического «0» на входе элемента равно 0 В, а напряжение логической  «1» - 5 В. Внутреннее сопротивление вольтметра значительно больше сопротивления резистора R1.

 

 

 

Вспомним особенности вольтамперной  характеристики полупроводникового кремниевого  диода небольшой мощности. При  обратном напряжении ток, протекающий через диод, составляет десятые доли микроампера. Напряжение на диоде при протекании через него в прямом направлении тока в десятки миллиампер, равно приблизительно 0,7-0,8 В. Определим примерно параметры логических уровней на выходах данного элемента, если на входе действуют логические уровни с указанными ранее параметрами. Если на оба входа поданы напряжения логических «1», то токи через диоды VD1 и VD2 не протекают, и напряжение на выходе элемента при условии, что сопротивление нагрузки значительно больше сопротивления резистора R1,  будет примерно равно напряжению питания. Если хотя бы один из входов элемента соединить с минусовым проводом источника питания, то на выходе элемента в случае кремниевых диодов будет напряжение 0,7 - 0,8 В (зависит от сопротивления резистора  R1 и напряжения источника питания).

 

Примечание: для рассмотренного логического  элемента логическая «1» на входе  будет, если вход никуда не подключен  или подключен к плюсовому  выводу источника питания.

 

На рисунке 1.7,б приведена схема простого и удобного в работе стенда для исследования диодно-резистивного логического элемента 2И. Светодиоды VD3 - VD5 являются индикаторами логических сигналов на входах и выходе логического элемента. Вольтметр V  позволяет определить напряжения логической единицы и логического нуля. Для диодно-резистивного логического элемента 2И напряжение логического нуля на выходе примерно 0,7-0,8 В, а напряжение логической единицы чуть меньше напряжения на зажимах источника питания (определяется соотношением сопротивлений резистора R1 и нагрузки).

 

На рисунках 1.8,а и 1.8,б приведены  схемы для исследования диодно-резистивного логического элемента 2ИЛИ. Для этого  элемента напряжение логического нуля на выходе равно 0 В, а напряжение логической единицы равно напряжению питания минус 0,7-0,8 В.

 

 

 

Следующим этапом совершенствования  элементной базы цифровой техники  было создание логических  элементов  диодно-транзисторной  логики.

 

Рассмотрим  принципиальную схему логического  элемента 2И-НЕ диодно-транзисторной логики (рис. 1.9,а).

 

 

 

Для понимания  принципа работы логического элемента  2И-НЕ диодно-транзисторной логики необходимо знать, какой вид имеет зависимость  тока коллектора транзистора от напряжения база-эмиттер при постоянном напряжении эмиттер- коллектор. Эта характеристика имеет примерно такой же вид, как и прямая ветвь вольтамперной характеристики полупроводникового диода. Для кремниевых транзисторов при напряжении база-эмиттер (в прямом направлении) менее 0,5 В ток в цепи коллектор-эмиттер практически равен нулю при любых допустимых напряжениях коллектор-эмиттер (транзистор закрыт, сопротивление между коллектором и эмиттером закрытого транзистора VТ1 может достигать единиц МОм). При незначительном увеличении напряжения база-эмиттер (в прямом направлении) более 0,5 В ток коллектора значительно увеличивается, говорят, что транзистор  открывается.

 

Диоды VD1, VD2 и резистор R1 (рис. 1.9,а) образуют логический элемент 2И. Роль инвертора выполняет  транзистор VT1. Если транзистор закрыт, то ток в цепи: плюс источника питания, резистор R2, коллектор-эмиттер транзистора VT1, минус источника питания не протекает и напряжение между эмиттером и коллектором транзистора будет равно напряжению на зажимах источника питания. Диоды VД3, VД4 необходимы для надежного закрытия транзистора VТ1, когда хотя бы на одном из входов элемента было напряжение логического нуля.

 

Если на обоих входах Х1, Х2 присутствуют сигналы логических единиц, транзистор VT1 открывается током базы, протекающим  по цепи: плюс источника питания, резистор R1, диоды VD3, VD4, переход база-эмиттер  транзистора VT1, минус источника. На выходе элемента будет напряжение 0,1-0,2 В, что соответствует логическому нулю.

Информация о работе Логические элементы