Расчет конфигурации сети Ethernet

Автор работы: Пользователь скрыл имя, 11 Января 2013 в 16:20, контрольная работа

Описание работы

Базовые технологии локальных сетей
Структура стандартов IEEE 802.1 - 802.5
Стандарты семейства IEEE 802.x охватывают только два нижних уровня семиуровневой модели OSI – физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты, как для локальных, так и для глобальных сетей.

Файлы: 1 файл

контр-ч2.doc

— 169.50 Кб (Скачать файл)

Кадр 802.3 является кадром MAС-подуровня, в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Формат кадра LLC был описан выше.

Результирующий кадр 802.3/LLC изображен в левой части  рисунка 4. Так как кадр LLC имеет  заголовок длиной 3 байта, то максимальный размер поля данных уменьшается до 1497 байт.

Рис. 4. Форматы кадров Ethernet

 

Справа на этом рисунке  приведен кадр, который называют кадром Raw 802.3 (то есть "грубый" вариант 802.3) или же кадром Novell 802.3. Из рисунка видно, что это кадр MAC-подуровня стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных - там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Теперь, когда необходимость  идентификации протокола верхнего уровня появилась, компания Novell стала использовать возможность инкапсуляции в кадр MAC-подуровня кадра LLC, то есть использовать стандартные кадры 802.3/LLC. Такой кадр компания обозначает теперь в своих операционных системах как кадр 802.2, хотя он является комбинацией заголовков 802.3 и 802.2.

Кадр стандарта Ethernet DIX, называемый также кадром Ethernet II, похож  на кадр Raw 802.3 тем, что он также не использует заголовки подуровня LLC, но отличается тем, что на месте поля длины в нем определено поле типа протокола (поле Type). Это поле предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра. Для кодирования типа протокола используются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II и 802.3 легко различимы.

Еще одним популярным форматом кадра является кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа  к подсетям). Кадр Ethernet SNAP определен  в стандарте 802.2H и представляет собой расширение кадра 802.3 путем введения дополнительного поля идентификатора организации, которое может использоваться для ограничения доступа к сети компьютеров других организаций.

В таблице 2 приведены  данные о том, какие типы кадров Ethernet обычно поддерживают реализации популярных протоколов сетевого уровня.

 

 

Таблица 2

Тип кадра 

Сетевые протоколы

Ethernet_II

IPX, IP, AppleTalk Phase I

Ethernet 802.3

IPX

Ethernet 802.2

IPX, FTAM

Ethernet_SNAP

IPX, IP, AppleTalk Phase II


Методика расчета конфигурации сети Ethernet

Для того, чтобы сеть Ethernet, состоящая из сегментов различной  физической природы, работала корректно, необходимо, чтобы выполнялись три  основных условия:

  • Количество станций в сети не превышает 1024 (с учетом ограничений для коаксиальных сегментов).
  • Удвоенная задержка распространения сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не превышает 575 битовых интервалов.
  • Сокращение межкадрового расстояния (Interpacket Gap Shrinkage) при прохождении последовательности кадров через все повторители не более, чем на 49 битовых интервалов (напомним, что при отправке кадров станция обеспечивает начальное межкадровое расстояние в 96 битовых интервалов).

Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и максимальную длину сегментов каждого типа.

Физический смысл ограничения  задержки распространения сигнала по сети уже пояснялся - соблюдение этого требования обеспечивает своевременное обнаружение коллизий.

Требование на минимальное  межкадровое расстояние связано  с тем, что при прохождении  кадра через повторитель это  расстояние уменьшается. Каждый пакет, принимаемый повторителем, ресинхронизируется для исключения дрожания сигналов, накопленного при прохождении последовательности импульсов по кабелю и через интерфейсные схемы. Процесс ресинхронизации обычно увеличивает длину преамбулы, что уменьшает межкадровый интервал. При прохождении кадров через несколько повторителей межкадровый интервал может уменьшиться настолько, что сетевым адаптерам в последнем сегменте не хватит времени на обработку предыдущего кадра, в результате чего кадр будет просто потерян. Поэтому не допускается суммарное уменьшение межкадрового интервала более чем на 49 битовых интервалов. Величину уменьшения межкадрового расстояния при переходе между соседними сегментами обычно называют в англоязычной литературе Segment Variability Value, SVV, а суммарную величину уменьшения межкадрового интервала при прохождении всех повторителей - Path Variability Value, PVV. Очевидно, что величина PVV равна сумме SVV всех сегментов, кроме последнего.

Расчет PDV

Для упрощения расчетов обычно используются справочные данные, содержащие значения задержек распространения сигналов в повторителях, приемопередатчиках и в различных физических средах. В таблице 3 приведены данные, необходимые для расчета значения PDV для всех физических стандартов сетей Ethernet, взятые из справочника Technical Reference Pocket Guide (Volume 4, Number 4) компании Bay Networks.

Таблица 3.

Тип сегмента

База левого сегмента

База промежуточного сегмента

База правого сегмента

Задержка среды на 1 м 

Максимальная длина сегмента

10Base-5

11.8

46.5

169.5

0.0866

500

10Base-2

11.8

46.5

169.5

0.1026

185

10Base-T

15.3

42.0

165.0

0.113

100

10Base-FB

-

24.0

-

0.1

2000

10Base-FL

12.3

33.5

156.5

0.1

2000

FOIRL

7.8

29.0

152.0

0.1

1000

AUI (> 2 м)

0

0

0

0.1026

2+48


Поясним терминологию, использованную в этой таблице, на примере сети, изображенной на рисунке 11.

 

 

Рис. 11. Пример сети Ethernet, состоящей из сегментов различных физических стандартов

Левым сегментом называется сегмент, в котором начинается путь сигнала от выхода передатчика (выход Tx) конечного узла. Затем сигнал проходит через промежуточные сегменты и доходит до приемника (вход Rx) наиболее удаленного узла наиболее удаленного сегмента, который называется правым. С каждым сегментом связана постоянная задержка, названная базой, которая зависит только от типа сегмента и от положения сегмента на пути сигнала (левый, промежуточный или правый). Кроме этого, с каждым сегментом связана задержка распространения сигнала вдоль кабеля сегмента, которая зависит от длины сегмента и вычисляется путем умножения времени распространения сигнала по одному метру кабеля (в битовых интервалах) на длину кабеля в метрах.

Общее значение PDV равно  сумме базовых и переменных задержек всех сегментов сети. Значения констант в таблице даны с учетом удвоения величины задержки при круговом обходе сети сигналом, поэтому удваивать полученную сумму не нужно.

Так как левый и  правый сегмент имеют различные  величины базовой задержки, то в  случае различных типов сегментов  на удаленных краях сети необходимо выполнить расчеты дважды: один раз принять в качестве левого сегмента сегмент одного типа, а во второй раз - сегмент другого типа, а результатом считать максимальное значение PDV. В нашем примере крайние сегменты сети принадлежат к одному типу - стандарту 10Base-T, поэтому двойной расчет не требуется, но если бы они были сегментами разного типа, то в первом случае нужно было бы принять в качестве левого сегмент между станцией и концентратором 1, а во втором считать левым сегмент между станцией и концентратором 5.

Рассчитаем значение PDV для нашего примера.

Левый сегмент 1: 15.3 (база) + 100 м ґ 0.113 /м = 26.6

Промежуточный сегмент 2: 33.5 + 1000 ґ 0.1 = 133.5

Промежуточный сегмент 3: 24 + 500 ґ 0.1 = 74.0

Промежуточный сегмент 4: 24 + 500 ґ 0.1 = 74.0

Промежуточный сегмент 5: 24 + 600 ґ 0.1 = 84.0

Правый сегмент 6: 165 + 100 ґ 0.113 = 176.3

Сумма всех составляющих дает значение PDV, равное 568.4.

Так как значение PDV меньше максимально допустимой величины 575, то эта сеть проходит по величине максимально  возможной задержки оборота сигнала. Несмотря на то, что ее общая длина больше 2500 метров.

Расчет PVV

Для расчета PVV также можно  воспользоваться табличными значениями максимальных величин уменьшения межкадрового интервала при прохождении повторителей различных физических сред (таблица 4 взята из того же справочника, что и предыдущая).

Таблица 4.

Тип сегмента

Передающий сегмент 

Промежуточный сегмент

10Base-5 или 10Base-2

16

11

10Base-FB

-

2

10Base-FL

10.5

8

10Base-T

10.5

8


В соответствии с этими  данными рассчитаем значение PVV для нашего примера.

Левый сегмент 1 10Base-T: дает сокращение в 10.5 битовых интервалов

Промежуточный сегмент 2 10Base-FL: 8

Промежуточный сегмент 3 10Base-FB: 2

Промежуточный сегмент 4 10Base-FB: 2

Промежуточный сегмент 5 10Base-FB: 2

Сумма этих величин дает значение PVV, равное 24.5, что меньше предельного значения в 49 битовых интервалов.

В результате, приведенная  в примере сеть по всем параметрам соответствует стандартам Ethernet.

 

Задание

 

Вариант

1 сегмент

2 сегмент

3 сегмент

4 сегмент

5 сегмент

6 сегмент

1

10Base-5

10Base-FB

10Base-T

10Base-FB

10Base-2

10Base-FL

2

10Base-2

10Base-T

10Base-T

10Base-T

10Base-T

10Base-5

3

10Base-T

10Base-T

10Base-T

10Base-T

10Base-FB

10Base-FL

4

10Base-FB

10Base-5

10Base-T

10Base-FL

10Base-T

10Base-2

5

10Base-FL

10Base-FB

10Base-T

10Base-T

10Base-2

10Base-FB

6

10Base-5

10Base-T

10Base-T

10Base-T

10Base-T

10Base-FB

7

10Base-2

10Base-FL

10Base-T

10Base-FB

10Base-T

10Base-FB

8

10Base-T

10Base-T

10Base-T

10Base-T

10Base-T

10Base-FL

9

10Base-FB

10Base-T

10Base-T

10Base-T

10Base-FB

10Base-FB

10

10Base-FL

10Base-FB

10Base-T

10Base-T

10Base-T

10Base-FL

11

10Base-T

10Base-T

10Base-T

10Base-2

10Base-T

10Base-2

12

10Base-T

10Base-FB

10Base-T

10Base-T

10Base-FB

10Base-T


 

Брать максимальную длину сегмента.

По результатам расчетов дать заключение о работоспособности сети. Привести свой вариант сети.

 

Содержание части 2 контрольной работы:

 

  1. Физический и канальный уровень – функциональное назначение.
  2. LLC и его виды
  3. Структура кадра LLC
  4. Метод доступа CSMA/CD
  5. Понятие коллизии причины ее возникновения
  6. Требования к физической среде Ethernet
  7. interframe gap, jam-последовательность, slot time, collision window – назначение и расчет
  8. Почему окно коллизий равно времени двукратного прохождения сигнала между самыми удаленными узлами сети
  9. Пример расчета максимальной пропускной способности сегмента Ethernet.
  10. Формат MAC-кадра и времена его передачи для Ethernet и Fast Ethernet.
  11. Форматы кадров Ethernet
  12. По каким критериям производиться расчет сети Ethernet.
  13. Почему расчет задержки распространения необходимо в общем случае производить дважды.
  14. Почему минимальным временем распространения кадра в 10BASE-T принято 575 бит.
  15. Почему уменьшение межкадрового расстояния повышает вероятность потери кадров.
  16. Почему происходит рассинхронизация кадров при прохождении повторителей.

 

 

 


Информация о работе Расчет конфигурации сети Ethernet