Метод дифференциального криптоанализа

Автор работы: Пользователь скрыл имя, 25 Февраля 2013 в 15:55, курсовая работа

Описание работы

Известны два основных типа шифров, комбинации которых образуют классические криптографические системы. Главная идея, положенная в основу их конструирования, состоит в комбинации функций, преобразующих исходные сообщения в текст шифровки, то есть превращающих эти исходные сообщения с помощью секретных ключей в нечитаемый вид. Но непосредственное применение функций сразу ко всему сообщению реализуется очень редко. Все практически применяемые криптографические методы связаны с разбиением сообщения на большое число частей фиксированного размера, каждая из которых шифруется отдельно, если не независимо.

Содержание работы

Введе-ние…………………………………………………..…………………….4
1. Комбинированные методы шифрования
Комбинирование простых способов шифрова-ния..………………………5

2. Теория проектирования блочных шиф-ров…...……………………………8
2.1. Сети Файсте-ля………………………………………………………..8
2.2. Простые соотноше-ния……………………………………………….9
2.3. Групповая структу-ра………………………………………………...9
2.4. Слабые клю-чи………………………………………………………10
2.5. Устойчивость алгоритма к дифференциальному и
линейному криптоанали-зу…………………………………………10
2.6. Проектирование S-блоков…………………………………………11
2.7. Проектирование блочного шиф-ра………………………………...13
3. Блочные шиф-ры……………………………………………………………14
3.1. Алгоритм Lucifer……………………………………………………14
3.2. Алгоритм Madryga………………………………………………….15
3.2.1. Описание алгоритма Madryga………………………………16
3.2.1. Криптоанализ алгоритма Madryga………………………….17
3.3. Алгоритм REDOC…………………………………………………..18
3.3.1. Алгоритм REDOC III………………………………………..18
3.4. Алгоритм LOKI……………………………………………………..19
3.4.1. Алгоритм LOKI91…………………………………………...19
3.4.2. Описание алгоритма LOKI91……………………………… 21
3.4.3. Криптоанализ алгоритма LOKI91………………………….21
3.5. Алгоритм Knufu и Knafre…………………………………………..22
3.5.1. Алгоритм Knufu…………………………………………..…23
3.5.2. Алгоритм Knafre………………………………………….....23
3.6. Алгоритм ММВ…………………………………………………….24
3.6.1. Стойкость алгоритма ММВ………………………………...25
3.7. Алгоритм Blowfish…………………………………………………26
3.7.1. Описание алгоритма Blowfish……………………………...26
3.7.2. Стойкость алгоритма Blowfish……………………………..29
3.8. Алгоритм RC5………………………………………………………29
4. Объединение блочных шифров…………………………………………....32
4.1. Двойное шифрование………………………………………………32
4.2. Тройное шифрование……………………………………………....33
4.2.1. Тройное шифрование с двумя ключа-ми…………………..33
4.2.2. Тройное шифрование с тремя ключа-ми…………………...35
4.2.3. Тройное шифрование с минимальным ключом…………..35
4.2.4. Режимы тройного шифрования……………………………35
4.2.5. Варианты тройного шифрования………………………….37
4.3. Удвоение длины блока…………………………………………… 38
4.4. Другие схемы многократного шифрования……………………...39
4.4.1. Двойной режим OFB/счетчика…………………………….39
4.4.2. Режим ECB+OFB…………………………………………...39
4.4.3. Схема xDESi………………………………………………...40
4.4.4. Пятикратное шифрова-ние………………………………….41
4.5. Уменьшение длины ключа в CDMF……………………………...42
4.6. Отбеливание………………………………………………………..42
4.7. Каскадное применение блочных алгоритмов……………………43
4.8. Объединение нескольких блочных алгоритмов…………………44
Заключение…...……………………………………………………………….45
Список литературы…………...………………………………………………46

Файлы: 1 файл

Дуганов А.К. Самостоятельная.doc

— 444.50 Кб (Скачать файл)

Перемешивание маскирует  взаимосвязи между открытым текстом, шифртекстом и ключом. Даже незначительная зависимость между этими тремя  составляющими может быть использована в дифференциальном и линейном криптоанализе. Хорошее перемешивание настолько усложняет статистику взаимосвязей, что пасуют даже мощные криптоаналитические средства.

Рассеивание распространяет влияние отдельных битов открытого  текста на возможно больший объем шифртекста. Это тоже маскирует статистические взаимосвязи и усложняет криптоанализ.

Для обеспечения надежности достаточно только перемешивания. Алгоритм, состоящий из единственной, зависимой от ключа таблицы подстановок 64 бит открытого текста в 64 бит шифртекста был бы достаточно надежным. Недостаток в том, что для хранения такой таблицы потребовалось бы слишком много памяти: 1020 байт. Смысл создания блочного шифра и состоит в создании чего-то подобного такой таблице, но предъявляющего к памяти более умеренные требования.

Тонкость, состоит в  том, что в одном шифре следует  периодически перемежать в различных  комбинациях перемешивание (с гораздо  меньшими таблицами) и рассеивание. Такой шифр называют составным шифром (product cipher). Иногда блочный шифр, который использует последовательные перестановки и подстановки, называют сетью перестановок-подстановок, или SP-сетью.

Рассмотрим функцию f алгоритма DES. Перестановка с расширением и Р-блок реализуют рассеивание, а S-блоки - перемешивание. Перестановка с расширением и Р-блок линейны, S-блоки - нелинейны. Каждая операция сама по себе очень проста, но вместе они работают превосходно.

Кроме того, на примере DES можно продемонстрировать еще несколько принципов проектирования блочных шифров. Первый принцип реализует идею итеративного блочного шифра. При этом предполагается, что простая функция раунда последовательно используется несколько раз. Двухраундовый алгоритм DES слишком ненадежен, чтобы все биты результата зависели от всех битов ключа и всех битов исходных данных. Для этого необходимо 5 раундов. Весьма надежен 16-раундовый алгоритм DES, а 32-раундовый DES еще более стоек.

 

2.1. Сети Файстеля

Большинство блочных  алгоритмов относятся к так называемым сетям Файстеля. Идея этих сетей  датируется началом семидесятых годов. Возьмем блок длиной п и разделим его на две половины длиной n/2: L и R. Разумеется, число п должно быть четным. Можно определить итеративный блочный шифр, в котором результат j-го раунда определяется результатом предыдущего раунда:

Li = Ri-1

Ri = Li-1 Å  f(Ri-1, Ki)

Ki - подключ j-го раунда, а f - произвольная функция раунда.

Применение этой концепции  можно встретить в алгоритмах DES, Lucifer, FEAL, Khufu, Khafre, LOKI, ГОСТ, CAST, Blowfish и других. Этим гарантируется обратимость функции. Так как для объединения левой половины с результатом функции раунда используется операция XOR, всегда истинно следующее выражение:

Li-1 Å  f(Ri-1, Ki ) Å  Li-1 Å  f(Ri-1, Ki) = Li-1 

Шифр, использующий такую  конструкцию, гарантированно обратим, если можно восстановить исходные данные f на каждом раунде. Сама функция f не важна, она не обязательно обратима. Мы можем спроектировать сколь угодно сложную функцию f,  но нам не понадобится реализовывать два разных алгоритма - один для зашифрования, а другой для расшифрования. Об этом автоматически позаботится структура сети Файстеля.

 

2.2. Простые  соотношения

Алгоритм DES характеризуется следующим свойством: если ЕК(Р) = С, то ЕK' (Р') = С', где Р', С' и K' - побитовые дополнения Р, С и K. Это свойство вдвое уменьшает сложность лобового вскрытия. Свойства комплементарности в 256 раз упрощают лобовое вскрытие алгоритма LOKI.

Простое соотношение  можно определить так:

Если ЕK(Р) = С, то Ef(K)(g(P,K)) = h(C,K)

где f, g и h - простые функции. Под «простыми функциями» подразумевают функции, вычисление которых несложно, намного проще итерации блочного шифра. В алгоритме DES функция f  представляет собой побитовое дополнение K, g - побитовое дополнение Р, a h - побитовое дополнение C. Это - следствие сложения ключа и текста операцией XOR. Для хорошего блочного шифра простых соотношений нет.

 

2.3. Групповая  структура

При изучении алгоритма  возникает вопрос, не образует ли он группу. Элементами группы служат блоки шифртекста для каждого возможного ключа, а групповой операцией служит композиция. Изучение групповой структуры алгоритма представляет собой попытку понять, насколько возрастает дополнительное скрытие текста при многократном шифровании.

Важен, однако, вопрос не о том, действительно ли алгоритм - группа, а о том, насколько он близок к таковому. Если не хватает только одного элемента, алгоритм не образует группу, но двойное шифрование было бы, с точки зрения статистики, просто потерей времени. Работа над DES показала, что этот алгоритм весьма далек от группы. Существует также ряд интересных вопросов о полугруппе, получаемой при шифровании DES. Содержит ли она тождество, то есть, не образует ли она группу? Иными словами, не генерирует ли, в конце концов, некоторая комбинация операций зашифрования (не расшифрования) тождественную функцию? Если так, какова длина самой короткой из таких комбинаций?

Цель исследования состоит  в оценке пространства ключей для  теоретического лобового вскрытия, а результат представляет собой наибольшую нижнюю границу энтропии пространства ключей.

 

2.4. Слабые ключи

В хорошем блочном  шифре все ключи одинаково  сильны. Как правило, нет проблем и с алгоритмами, включающими небольшое число слабых ключей, например, DES. Вероятность случайного выбора одного из них очень мала, и такой ключ легко проверить и, при необходимости, отбросить. Однако если блочный шифр используется как однонаправленная хэш-функция, эти слабые ключи иногда могут быть задействованы.

 

2.5. Устойчивость  алгоритма к дифференциальному  и

 линейному криптоанализу

Исследования дифференциального и линейного криптоанализа значительно прояснили теорию проектирования надежных блочных шифров. Авторы алгоритма IDEA ввели понятие дифференциалов, обобщение основной идеи характеристик. Они утверждали, что можно создавать блочные шифры, устойчивые к атакам такого типа. В результате подобного проектирования появился алгоритм IDEA. Позднее это понятие было формализовано в работах Кайса Ниберг (Kaisa Nyberg) и Ларе Кнудсен, которые описали метод создания блочных шифров, доказуемо устойчивых к дифференциальному криптоанализу. Эта теория была расширена на дифференциалы высших порядков и частные дифференциалы. Как представляется, дифференциалы высших порядков применимы только к шифрам с малым числом раундов, но частные дифференциалы прекрасно объединяются с дифференциалами.

Линейный криптоанализ появился сравнительно недавно, и продолжает совершенствоваться. Были определены понятия ранжирования ключей и многократных аппроксимаций. Кем-то была предпринята попытка объединения в одной атаке дифференциального и линейного методов криптоанализа. Пока неясно, какая методика проектирования сможет противостоять подобным атакам.

Кнудсен добился известного успеха, рассматривая некоторые необходимые (но, возможно, недостаточные) критерии того, что он назвал практически стойкими сетями Файстеля - шифров, устойчивых как к дифференциальному, так и к линейному криптоанализу. Ниберг ввел для линейного криптоанализа аналог понятия дифференциалов в дифференциальном криптоанализе.

Достаточно интересна, как представляется, двойственность дифференциального и линейного методов криптоанализа. Эта двойственность становится очевидной как при разработке методики создания хороших дифференциальных характеристик и линейных приближений, так и при разработке критерия проектирования, обеспечивающего устойчивость алгоритмов к обоим типам вскрытия. Пока точно неизвестно, куда заведет это направление исследований. Для начала Дэймен разработала стратегию проектирования алгоритма, основанную на дифференциальном и линейном криптоанализе.

 

2.6. Проектирование S-блоков

Мощь большинства сетей Файстеля, а особенно их устойчивость к дифференциальному  и линейному криптоанализу, напрямую связана с их S-блоками. Поэтому вопрос о том, что же образует хороший S-блок, стал объектом многочисленных исследований.

S-блок - это просто подстановка: отображение m-битовых входов на n-битовые выходы. Применяется большая таблица подстановок 64-битовых входов на 64-битовые выходы. Такая таблица представляет собой S-блок размером 64*64 бит. S-блок с m-битовым входом и n-битовым выходом называется m*n-битовым S-блоком. Как правило, обработка в S-блоках - единственная нелинейная операция в алгоритме. Именно S-блоки обеспечивают стойкость блочного шифра. В общем случае, чем больше S-блоки, тем лучше.

В алгоритме DES используются восемь различных 6*4-битовых S-блоков. В алгоритмах Khufu и Khafre предусмотрен единственный 8*32-битовый S-блок, в LOKI – 12*8-битовый S-блок, а в Blowfish и CAST – 8*32-битовые S-блоки. В IDEA S-блоком, по сути, служит умножение по модулю, это 16+16-битовый S-блок. Чем больше S-блок, тем труднее обнаружить статистические данные, нужные для вскрытия методами дифференциального или линейного криптоанализа. Кроме того, хотя случайные S-блоки обычно не оптимальны с точки зрения устойчивости к дифференциальному и линейному криптоанализу, стойкие S-блоки легче найти среди S-блоков большего размера. Большинство случайных S-блоков нелинейны, невырождены и характеризуются высокой устойчивостью к линейному криптоанализу, причем с уменьшением числа входных битов устойчивость снижается достаточно медленно.

Размер т важнее размера п. Увеличение размера п снижает эффективность дифференциального криптоанализа, но значительно повышает эффективность линейного криптоанализа. Действительно, если п ≥ 2m - т, наверняка существует линейная зависимость между входными и выходными битами S-блока. А если п ≥ 2m , линейная зависимость существует даже только между выходными битами. Заметная доля  работ по проектированию  S-блоков  состоит в  изучении булевых функций. Для  обеспечения  безопасности,  булевы функции S-блоков должны отвечать определенным требованиям. Они не должны быть ни линейными, ни аффинными, ни даже близкими к линейным или аффинным функциям. Число нулей и единиц должно быть сбалансированным, и между различными комбинациями битов не должно быть никаких корреляций. При изменении значения любого входного бита на противоположное выходные биты должны вести себя независимо. Эти критерии проектирования так же связаны с изучением бент-функций (bent functions): функций, которые, как можно показать, оптимально нелинейны. Хотя они определены просто и естественно, их изучение очень трудно.

По-видимому, очень важное свойство S-блоков - лавинный эффект: сколько выходных битов S-блока изменяется при изменении некоторого подмножества входных битов. Нетрудно задать для булевых функций условия, выполнение которых обеспечивает определенный лавинный эффект, но проектирование таких функций задача сложная. Строгий лавинный критерий (Strict Avalanche Criteria - SAC) гарантирует изменение ровно половины выходных битов при изменении единственного входного бита. В одной из работ эти критерии рассматриваются с точки зрения утечки информации.

Несколько лет назад  крипгографы предложили выбирать S-блоки так, чтобы таблица распределения различий для каждого S-блока была однородной. Это обеспечило бы устойчивость к дифференциальному криптоанализу за счет сглаживания дифференциалов на любом отдельном раунде. В качестве примера такого проектирования можно назвать алгоритм LOKI. Однако такой подход иногда облегчает дифференциальный криптоанализ. На самом деле, удачнее подход, гарантирующий наименьшее значение максимального дифференциала. Кванджо Ким (Kwangjo Kim) выдвинул пять критериев проектирования S-блоков, напоминающих критерии проектирования S-блоков DES.

Выбор хороших S-блоков - нелегкая задача. Известно множество конкурирующих подходов ее решения; среди hих можно выделить четыре основных.

  • Случайный выбор. Ясно, что небольшие случайные S-блоки ненадежны, но крупные случайные S-блоки могут оказаться достаточно хорошими. Случайные S-блоки с восемью и более входами достаточно стойки, еще лучше 12-битовые S-блоки. Стойкость S-блоков возрастает, если они одновременно и случайны, и зависят от ключа.
  • Выбор с последующим тестированием. В некоторых шифрах сначала генерируются случайные S-блоки, а затеи их свойства тестируются на соответствие требованиям.
  • Разработка вручную. При этом математический аппарат используется крайне незначительно: S-блоки создаются с использованием интуитивных приемов. Барт Пренел (Bart Preneel) заявил, что «... теоретически интересные критерии недостаточны (для выбора булевых функций S-блоков)...», и «... необходимы специальные критерии проектирования».
  • Математическая разработка. S-блоки создаются в соответствии с законами математики, поэтому обладают гарантированной устойчивостью к дифференциальному и линейному криптоанализу и хорошими рассеивающими свойствами.

 

Раздавались призывы  объединить «математический» и «ручной» подходы, но реально, по-видимому, конкурируют случайно выбранные S-блоки и S-блоки с определенными свойствами. К преимуществам последнего подхода можно отнести оптимизацию против известных методов вскрытия — дифференциального и линейного криптоанализа. Однако в этом случае неясна степень защиты от неизвестных методов вскрытия. Разработчики DES знали о дифференциальном криптоанализе, поэтому S-блоки DES оптимизированы надлежащим образом. Но, вероятнее всего, о линейном криптоанализе они не знали, и S-блоки DES очень слабы по отношению к такой атаке. Случайно выбранные S-блоки в DES были бы слабее к дифференциальному криптоанализу, но устойчивее к линейному криптоанализу.

Информация о работе Метод дифференциального криптоанализа