Генераторы синусоидальных колебаний

Автор работы: Пользователь скрыл имя, 11 Января 2014 в 12:51, курс лекций

Описание работы

Колебания синусоидальной формы являются одним из наиболее распространенных в радиоэлектронике видом колебаний. Существует много устройств на различных активных элементах для генерации таких колебаний. Генераторами называются электронные схемы, формирующие переменное напряжение требуемой формы. Сначала в этой главе будут рассмотрены генераторы синусоидальных сигналов, а затем генераторы сигналов специальной формы, в частности генераторы треугольного и прямоугольного напряжения.

Файлы: 1 файл

Лекция по генераторам.doc

— 487.50 Кб (Скачать файл)

4. ГЕНЕРАТОРЫ  СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Колебания синусоидальной формы являются одним из наиболее распространенных в радиоэлектронике видом колебаний. Существует много устройств на различных  активных элементах для генерации  таких колебаний.

Генераторами называются электронные схемы, формирующие переменное напряжение требуемой формы. Сначала в этой главе будут рассмотрены генераторы синусоидальных сигналов, а затем генераторы сигналов специальной формы, в частности генераторы треугольного и прямоугольного напряжения.

4.1. УСЛОВИЯ ВОЗБУЖДЕНИЯ

Рис. 4.1. Блок-схема генератора

 

На рис. 4.1 показана блок-схема генератора. Усилитель усиливает входной сигнал в А раз. При этом между выходным U2 и входным U1 напряжениями усилителя возникает паразитный фазовый сдвиг a. К выходу усилителя подключены нагрузочное сопротивление Rv и схема частотно-зависимой обратной связи, которая может представлять собой, например, колебательный контур. При этом, напряжение, используемое для осуществления обратной связи, составляет U 3 = кU2. Обозначим фазовый сдвиг между напряжениями U3 и U 2 символом b.  Для того чтобы определить, будет ли схема с замкнутой обратной связью генерировать переменное напряжение, нагрузим выход схемы обратной связи разомкнутого генератора на резистор с сопротивлением Rе, которое равно входному сопротивлению усилителя, и оценим величину выходного напряжения  U3 при подаче на вход усилителя  переменного   напряжения U1. Условием генерации замкнутой схемы является равенство выходного напряжения схемы обратной связи и входного напряжения усилителя. Это условие записывается следующим образом:

U1=U3=kAU1

Коэффициент петлевого усиления должен, таким образом, равняться

g = к А = 1. (4.1)

Из этого соотношения  следуют два условия:

\g\ = \к\ * \а\ = 1, (4.2)

a+ b = 0; 2л, .... (4.3)

Соотношение (4.2) называется условием баланса амплитуд. Оно заключается в том, что схема генератора может возбуждаться только тогда, когда усилитель компенсирует потери в схеме обратной связи. Соотношение (4.3) называется условием баланса фаз. Оно означает, что колебания в замкнутой системе могут возбуждаться только тогда, когда фаза выходного напряжения схемы обратной связи и фаза входного напряжения усилителя совпадают, т.е. обратная связь является положительной.

Широкополосность цепи ОС является характерным признаком всех генераторов импульсов, причем во всех случаях на частоте w > 0 выполняется условие g < 1. В противном случае устройство превратится в триггер. Это условие свидетельствует о наличии накопителя энергии, уменьшающего петлевое усиление на низких или инфранизких частотах до уровня, при котором  невозможно  появление  устойчивого  состояния.

Генераторы синусоидального  напряжения отличаются тем, что у  них цепь обратной связи имеет  резонансные свойства. Поэтому условия возникновения колебаний выполняются только на одной частоте, а не в полосе частот, как у генераторов импульсов. В качестве резонаторов, обеспечивающих получение резонансных свойств, используют LC-контуры, RC-цепи определенного вида, кварцевые резонаторы, электромеханические колебательные системы  и  др.

Различают «мягкий» и  «жесткий» режимы возбуждения генераторов. При мягком режиме петлевое усиление больше единицы (\g\>1) в момент включения напряжения питания. Тогда любые шумы или возмущения в системе, вызванные случайными факторами, усиливаются и через цепь обратной связи подаются на вход усилителя в фазе, совпадающей с фазой входного сигнала, причем величина этого дополнительного сигнала больше того возмущения, которое вызвало его появление. Соответственно увеличится выходное напряжение, что приведет к дальнейшему увеличению входного сигнала и т. д. В итоге случайно возникшее возмущение приведет к непрерывному нарастанию выходного сигнала, которое достигло бы бесконечного большого значения, если бы это было возможно. Однако при определенном уровне сигнала начинают проявляться нелинейные свойства электронного усилителя. Коэффициент усиления начинает уменьшаться с увеличением значения сигнала в системе. При выполнении условия g = 1 амплитуда автоколебаний стабилизируется и автогенератор начинает давать колебания,  имеющие  постоянную  амплитуду.

Рис. 4.2. «Жесткий» режим возникновения  автоколебаний.

 

Жесткий режим возбуждения отличается от рассмотренного тем, что при нем для возникновения автоколебаний необходимо приложить к устройству дополнительный внешний сигнал, не меньший определенного значения. Это связано с особенностями нелинейности усилительного устройства. В момент включения напряжения питания и отсутствия автоколебаний g < 1. Поэтому   они   сами   собой возникнуть не могут. Коэффициент усиления зависит от амплитуды выходного сигнала. Поэтому если на вход усилителя подать дополнительный электрический сигнал, то при определенном его значении начнет выполняться условие g > 1. При этом возникнут автоколебания, амплитуда которых будет нарастать и примет стационарное значение при g = 1. Процесс возникновения колебаний поясняет рис. 4.2. При приложении входного сигнала, большего UвхА, например UBXl, он усиливается до напряжения, определяемого точкой 1, и снова подается на вход. Входное напряжение станет равным UBx2. Выходное напряжение будет определяться точками 2—6 и т. д. Процесс увеличения амплитуды прекратится при достижении выходным сигналом значения Uуст (точка 6, в которой g=1). Если каким-либо путем амплитуду выходного сигнала уменьшить до  значения,  меньшего   UвхА,  то  автоколебания прекратятся.

На практике активные приборы в  автогенераторах часто работают с отсечкой тока. Поэтому подход, основанный на использовании теории обратной связи, обычно применяют для пояснения физической картины процессов. Анализ и расчет автогенераторов проводят другими методами, в основе которых лежит баланс энергий, рассеиваемых в устройстве и отбираемых от  источника  питания.

4.2. Генераторы LC-типа.

Эти генераторы имеют  сравнительно высокую стабильность частоты колебаний, устойчиво работают при значительных изменениях параметров транзисторов, обеспечивают получение колебаний, имеющих малый коэффициент гармоник. К недостаткам их относятся трудности изготовления высокостабильных температурно-независимых индуктивностей, а также высокая стоимость и громоздкость последних. Особенно это проявляется при создании автогенераторов диапазона инфранизких частот, в которых даже при применении ферромагнитных сердечников габаритные размеры, масса и стоимость  получаются  большими.

В генераторе LC-типа формы выходного напряжения весьма близка к гармонической. Это обусловлено хорошими фильтрующими свойствами колебательного LC-контура. Они, как правило, работают с «отсечкой» тока активных приборов усилителя. Соответственно форма выходного тока усилителя резко отличается от синусоидальной. При этом в начальный момент возникновения автоколебаний |g|»1, что обеспечивает устойчивую работу автогенератора даже при значительных изменениях параметров его элементов. Для самовозбуждения генератора LC-типа также необходимо наличие положительной обратной  связи.

Сущность самовозбуждения  заключается в следующем. При  включении источника питания  конденсатор колебательного контура, включенного чаще всего в коллекторную цепь транзистора, заряжается. В контуре возникают затухающие автоколебания, причем часть тока (напряжения) этих колебаний подается на управляющие электроды активного прибора, образуя положительную обратную связь. Это приводит к пополнению энергии LC-контура. Автоколебания превращаются     в незатухающие. Частота автоколебаний в первом приближении определяется резонансной частотой LC-контура:

Многочисленные схемы  автогенераторов LC-типа различаются в основном схемами введения сигнала обратной связи и способами подключения к усилителю колебательного контура.

На рис. 4.3, а показано введение положительной ОС с помощью трансформаторной обратной связи (обмотка 2). Напряжение ОС зависит от соотношения числа витков обмоток 1 и 2. На рис. 4.3, б использована автотрансформаторная обратная связь. Источник питания Е подключен к части витков катушки индуктивности L, что уменьшает его шунтирующее действие и повышает добротность колебательного контура LCV. Сопротивление разделительного конденсатора С2 на частоте колебаний близко к нулю. На рис. 4.3, в показан генератор, собранный по схеме емкостной трехточки. В нем напряжение обратной связи снимается с конденсатора С2. Энергия, поддерживающая автоколебания, вводится в форме импульсов тока /э. Для уменьшения шунтирующего действия транзистора он подключен к контуру через емкостный делитель  напряжения.

Рис. 4.3. LC- автогенераторы:

а – с трансформаторной ОС; б – с автотрансформаторной ОС; в – с емкостной трехточкой.

 

Для количественной оценки устойчивости автоколебаний часто вводят коэффициент регенарации. Это безразмерный коэффициент, характеризующий режим работы автогенератора и показывающий, во сколько раз можно уменьшить добротность Q колебательной системы по сравнению с ее исходным значением, чтобы автогенератор оказался на границе срыва  колебаний:

где XL — реактивное сопротивление индуктивности контура; R—эквивалентное активное сопротивление контура, включающее и сопротивление активного элемента, шунтирующего его. В низкочастотных автогенераторах коэффициент регенерации  обычно  не  менее   1,5—3.

Следует отметить, что  в транзисторных генераторах источник возбуждающих колебаний имеет, как правило, малое внутреннее сопротивление. Следовательно, в цепи базы протекает ток несинусоидальной формы, а напряжение база — эмиттер  остается синусоидальным. 

Рис. 4.4. Форма коллекторного  тока и генерируемого автогенератором  сигнала

 

Хорошие энергетические показатели у генератора могут быть получены только при работе с «отсечкой тока» (ток через транзистор имеет форму импульсов; рис. 4.4, а). При этом считается, что наилучшие энергетические характеристики имеют место при угле отсечки 50о-70°. В то же время для возникновения автоколебаний необходимо, чтобы угол отсечки составлял 90°. В противном случае до возникновения автоколебаний на базе транзистора будет только запирающее напряжение и без воздействия дополнительного внешнего отпирающего напряжения («жесткий» режим возбуждения)  автоколебания  не  возникнут.

При «мягком» режиме возбуждения на базу должно быть подано отпирающее напряжение порядка 0,3—0,5 В. При возникновении автоколебаний смещение должно автоматически изменяться в зависимости от амплитуды колебаний до получения нужного угла отсечки. Здесь нетрудно увидеть взаимосвязь с рассмотренным выше положением о необходимости введения цепи, изменяющей смещение до получения |g| = 1.

При достаточно глубокой ОС и неправильно  подобранных емкостях конденсаторов  Сэ, Сб (рис. 4.3, а) может возникнуть прерывистая генерация или автомодуляция. В этом случае амплитуда колебаний имеет переменное значение или уменьшается до нуля на определенные промежутки времени (рис. 4.3, б). Прерывистая генерация обусловлена тем, что при определенных условиях напряжение автоматического смещения вследствие зарядки конденсаторов Сб, Сэ и Сэ может приблизиться к амплитуде напряжения ОС. Транзистор перестанет открываться и пополнять энергию колебательного контура. В итоге автоколебания быстро затухнут до нуля и возникнут снова только после разрядки конденсаторов С6 и Сэ. Затем процесс нарастания амплитуды, зарядки конденсаторов и срыва автоколебаний   повторится.    Поэтому   цепи,    обеспечивающие

 

4.3. АВТОГЕНЕРАТОРЫ ТИПА RС

Применение генераторов с колебательными контурами (типа LC) для генерирования колебаний с частотами меньше 15—20 кГц затруднено и неудобно из-за громоздкости контуров. В настоящее время для этих целей широко используются генераторы типа RC, в которых вместо колебательного контура применяются избирательные RС-фильтры. Генераторы типа RC могут генерировать весьма стабильные синусоидальные колебания в сравнительно широком диапазоне частот от долей герца до сотен килогерц. Кроме того, они имеют малые габариты и массу. Наиболее полно преимущества генераторов типа RC проявляются в области низких частот.

Структурная схема генератора синусоидальных колебаний типа RC  приведена   на   рис.   4.5.

Рис. 4.5. Структурная схема RC-генератора

 

Усилитель строится по обычной резистивной  схеме. Для самовозбуждения усилителя, т. е. для превращения первоначально возникших колебаний в незатухающие, необходимо на вход усилителя подавать часть выходного напряжения, превышающую входное напряжение или равную ему по величине и совпадающую с ним по фазе, иными словами, охватить усилитель положительной обратной связью достаточной глубины. При непосредственном соединении выхода усилителя с его входом происходит самовозбуждение, однако форма  генерируемых колебаний будет резко отличаться от синусоидальной, поскольку условия самовозбуждения будут одновременно выполняться для колебаний многих частот. Для получения синусоидальных колебаний необходимо, чтобы эти условия выполнялись только на одной определенной частоте и резко нарушались на всех других частотах.

Рис. 4.6. Трехзвенные фазовращающие  цепочки:

а – типа «R-параллель»; б – типа «C-параллель»

 

Эта задача решается с  помощью фазовращающей цепочки, которая имеет несколько звеньев RC и служит для поворота фазы выходного напряжения усилителя на 180°. Изменение фазы зависит от числа звеньев п и равно

В связи с тем что  одно звено RC изменяет фазу на угол < 90°, минимальное число звеньев фазовращающей цепочки п — 3. В практических схемах генераторов обычно используют трехзвенные фазовращающие цепочки.

На рис. 4.6 изображены два варианта таких цепочек, получивших название соответственно «R-параллель» и «С-параллель». Частота генерируемых синусоидальных колебаний для  этих схем  при условии    R1 = R2 = R3 = R   и   Ct = С2 = С3 = С   рассчитывается по следующим формулам: для схемы на рис. 4.6, а:

Информация о работе Генераторы синусоидальных колебаний