Устройства ввода и вывода информации

Автор работы: Пользователь скрыл имя, 12 Марта 2013 в 10:25, реферат

Описание работы

Люминофор наносится в виде наборов точек трёх основных цветов — красного, зелёного и синего. Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Люминофор начинает светиться под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом.

Содержание работы

Введение
Мониторы CRT и LCD: структура и принцип работы LCD- и CRT-мониторов;
Технология формирования растра;
Виды цветоделительных масок;
Лазерные и струйные принтеры и их принцип работы;
Приложения

Файлы: 1 файл

реферат на информатику.doc

— 138.50 Кб (Скачать файл)

Министерство образования и  науки Российской Федерации

Федеральное государственное автономное  образовательное учреждение

 высшего профессионального  образования

 «Российский государственный  профессионально-педагогический университет»  филиал в г. Первоуральске

 

 

 

 

 

 

 

 

Реферат

на тему:

«Устройства вывода информации»

 

 

 

 

 

 

 

работу выполнил: Байлимирова  И.А.

группа: АПР 112

работу проверил:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Первоуральск

2012 г.

Содержание

Введение  

  1. Мониторы CRT и LCD: структура и принцип работы LCD- и CRT-мониторов;
  2. Технология формирования растра;
  3. Виды цветоделительных масок;
  4. Лазерные и струйные принтеры и их принцип работы;

Приложения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Устройства вывода  - это устройства, которые переводят информацию с машинного языка в формы, доступные для человеческого восприятия.

К устройствам вывода относятся:

Монитор (дисплей) - универсальное устройство визуального отображения всех видов информации

Различают алфавитно-цифровые и графические мониторы, а также  монохромные мониторы и мониторы цветного изображения - активно-матричные и пассивно-матричные жкм. 

Разрешающая способность  выражается количеством элементов  изображения по горизонтали и  вертикали. Элементами графического изображения  считаются точки – пиксели (picture element).

Существуют:

1) мониторы на базе  электронно-лучевой трубки (CRT).

2) жидкокристаллические  мониторы (LCD) на базе жидких кристаллов. Жидкие кристаллы – особое  состояние некоторых органических  веществ, в котором они обладают  текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под воздействием электрического напряжения.

Принтер – устройство для вывода информации в виде печатных копий текста или графики.

Плоттер (графопостроитель) – устройство, которое чертит графики, рисунки и диаграммы под управлением компьютера. Изображение получается с помощью пера. Используется для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем.

 

 

 

1. Мониторы CRT и LCD: структура и принцип работы LCD- и CRT-мониторов

 

 Монитор ( дисплей  ) компьютера IBM PC предназначен для  вывода на экран текстовой  и графической информации. Мониторы  бывают цветными и монохромными. Они могут работать в одном из двух режимов: текстовом или графическом.

CRT (Cathode Ray Tube) мониторы  сконструированы на базе электронно-лучевой  трубки (ЭЛТ), и принцип их работы  аналогичен принципу работы телевизора. Используемая в этом типе мониторов технология была разработана немецким ученым Фердинандом Брауном в 1897г. и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.  
    Основной элемент дисплея —электронно-лучевая трубка её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором — специальным веществом, способным излучать свет при попадании на него быстрых электронов.    

 Люминофор наносится  в виде наборов точек трёх  основных цветов — красного, зелёного и синего. Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Люминофор начинает светиться под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. (Приложение 1)

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел — точку, из которых формируется изображение (англ. pixel — picture element, элемент картинки). Расстояние между центрами пикселов называется точечным шагом монитора. Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,28 мм.(и меньше) При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета.На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксел, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.    

Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим  количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.  
Ход электронного пучка по экрану: на ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пиксели строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д. Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Как создается изображение? Цвета на экране цветного монитора образуются результате смешения красной, зеленой и синей (Red, Green, Blue – RGB) составляющих, имеющих различные интенсивности. Поэтому на внутреннюю поверхность экрана кинескопа наносятся три типа люминофорных элементов, дающих люминесценцию соответствующего спектрального диапазона. В кинескопах, используемых для мониторов, в основном применяются два вида люминофорных элементов – круглой формы и в виде полос.

Люминофорные элементы светятся под действием попадающих на них электронов. В кинескопе  формируются три электронных  пучка – каждый на свой цвет. Пучок  имеет конечные размеры, поэтому, чтобы  он не попадал на края соседних точек люминофора другого цвета и не “подсвечивал” их, применяется теневая маска (Shadow Mask), ограничивающая размеры пучков. Для получения качественного изображения отверстия маски расположены строго напротив люминофорных элементов, нанесенных на экран.  
    Чем покрыт экран? Во время работы монитора поверхность его экрана подвергается интенсивной электронной бомбардировке, в результате чего может накапливаться заряд статического электричества. Это приводит к тому, что поверхность экрана “притягивает” большое количество пыли, а кроме того, при прикосновении рукой к заряженному экрану пользователя может неприятно “щелкнуть” слабый электрический разряд. Для уменьшения потенциала поверхности экрана на него наносят специальные проводящие антистатические покрытия, которые в документации обозначают сокращением AS – anti-static.    

 Какие мониторы называют  плоскими? Чем “площе” экран  монитора, тем меньше искажаются  на нем геометрические фигуры. Сейчас выпускаются два основных  типа кинескопов, у которых экран имеет сферическую и цилиндрическую кривизну. Поверхность экрана кинескопа в первом случае представляет собой сегмент, вырезанный из сферы, а во втором – из вертикального цилиндра. На 14-дюймовых мониторах применяются сферические экраны, которые имеют довольно большую кривизну (R – 0,5 м) по обоим направлениям. Затем появились сферические кинескопы с меньшей кривизной (для 15 дюймов – R=1 м). Такие ЭЛТ называют трубками с плоским квадратным экраном, ил FST (Flat Square Tube). Происхождение названия связано с тем, что углы кинескопа не закругленные, а прямые. Трубки с апертурной решеткой (Trinitron, Diamondtron, SonicTron) делают действительно плоскими по вертикали. При этом радиус их кривизны по горизонтали примерно равен радиусу кривизны трубок FST. Из-за привычки глаза к сферическому экрану первое впечатление от изображения, получаемого на трубке Trinitron, такое, будто оно вогнуто в другую сторону. Кроме уменьшения геометрических искажений более плоские экраны обладают лучшими антибликовыми свойствами в силу действия обычных законов отражения

Кроме того есть жидкокристаллические или LCD мониторы. 
Из всего ряда плоских дисплеев LCD выделяются тем, что сама жидкокристаллическая панель не является источником света; она лишь пропускает через себя свет, излучаемый неоновой лампой. Подтип таких дисплеев, TFT LCD, принято также называть жидкокристаллическими дисплеями с активной матрицей. Аббревиатура TFT (тонкоплёночный транзистор) обозначает управляющий элемент матрицы, контролирующий работу каждого отдельного пикселя.

Чтобы понять, как LCD контролирует яркость, нужно вспомнить эффект поляризации  света из курса общей физики. Если не вдаваться в подробности, то данный эффект можно описать так: свет поляризуется, проходя через первый специальный  фильтр, характеризуемый определённым углом поляризации. Для человеческого глаза ничего не меняется, только в два раза падает яркость света. Но если за первым фильтром поставить ещё один такой же, то свет будет либо полностью им поглощаться (если угол поляризации второго фильтра перпендикулярен углу первого), либо беспрепятственно проходить (если углы совпадают). Плавное изменение угла второго фильтра позволяет плавно регулировать интенсивность света. 
    Общий принцип действия всех TFT LCD показан на рисунке ниже: свет от неоновой лампы проходит через систему отражателей, направляется через первый поляризационный фильтр и попадает в слой жидких кристаллов, контролируемый транзистором; затем свет проходит через цветовые фильтры (каждый пиксель матрицы строится из трёх компонент цвета – красной, зелёной и синей). Транзистор создаёт электрическое поле, задающее ориентацию жидких кристаллов. Свет, проходя через такую структуру, меняет свою поляризацию, и в зависимости от неё будет либо полностью поглощён вторым поляризационным фильтром на выходе (образуя чёрный пиксель), либо не будет поглощаться или поглотится частично (образуя различные цветовые оттенки, вплоть до чистого белого). (Приложение 2)

Поляризация, лежащая в основе LCD технологии, имеет и свои минусы. Один из главных – сокращение угла обзора жидкокристаллического дисплея.

2.Основные характеристики растровой графики

Основными параметрами  изображения в растровой форме  является разрешение, возможное количество градаций. Различают разрешение линейное — количество столбцов по горизонтали и линий по вертикали, и цветовое/оттеночное — количество оттенков или цветов у каждой точки. Линейное разрешение описывают как количество точек, а цветовое — в виде количества битов, отводимых на описание каждой отдельной точки (эту величину еще называют битовой глубиной цвета). Чем выше количество точек на единицу площади, чем выше количество цветов каждой точки, тем выше возможное качество изображения, но тем больше объем памяти, необходимый для хранения и обработки изображения. Например, при использовании 24 бит для представления цвета каждой точки может быть использовано 16 777 216 (224) оттенков, и изображение размером 1280 ґ 1024 точки (разрешение современного монитора) будет занимать как минимум 3840 Кб памяти.

Растровая графика — универсальное средство для формирования и обработки любых плоских изображений. С помощью цветов и оттенков отдельных точек на плоском изображении могут быть показаны и пространственные (объемные) сцены.

Растровая графика — основное средство представления и обработки фотографических изображений, стилизованных художественных рисунков, всевозможных диаграмм, текста. С помощью именно этого способа представления информации строятся современные человеко-машинные интерфейсы.

Несмотря на универсальность, этот способ представления информации имеет целый ряд недостатков. К ним относятся: зависимость (причем квадратичная) качества изображения от его объема, трудность выделения и манипуляции отдельными осмысленными элементами, существенное падение качества изображения в результате геометрических преобразований.

Для преодоления этих недостатков  программы работы с растровой  графикой предусматривают средства создания составных изображений  с помощью механизма слоев (layers) — накладывающихся друг на друга плоскостей, в каждой из которых используется только часть точек, механизма фильтров — преобразующих цвета пикселей с учетом некоторых параметров (выполняя, например, размытие или внесение геометрических искажений), управления цветовыми каналами и способом взаимодействия отдельных слоев.

Программы работы с растровой графикой имеют в своем составе большой  набор способов изменения цвета  пикселей, для этого используется метафора “инструмента” — модели кисти или карандаша с изменяемыми  параметрами. Пользователь может создавать библиотеки таких инструментов.

Как было показано выше, при хранении и обработке растровая графика  требует большого объема памяти. Поэтому  при разработке способов ее хранения и передачи часто используют сжатие — преобразование, позволяющее уменьшить  объем при хранении.

Маска теневая - Пластина являющаяся частью второго анода с круглыми отверстиями. В каждой триаде зерен соответствует одно отверстие в теневой маке. Электронной пушке такого типа расположены ассиметрично в виде дельны (треугольником) все три пушки сдвинуты относительно главной оптической оси проходящей через главный центр треугольника на угол-полтора (1-1,5) градуса. Проходя через одно отверстие теневой сачки 3-ри луча от пушек проходя через свои отверстия попадают на пикселя только одно триады. Причем луча от пушки зеленого цвета попадают на зеленый, красный на красный, зеленый на зеленый.Плюсы:- Дешевая реализация.%Минусы:1.Сложенная система сведения лучей по вертикали и горизонтали из-за того что все три пушки не находятся на главной оптической оси.2.Невысокая яркость и цветность из-за того что большое количество электронов сталкиваются с теневой маской.ЭЛТ с щелевой маской (Slot Mask) - Щелевая цветоделительная маска образована множеством тонких вертикальных щелей, а люминофор нанесенный на обратную сторону экрана в виде чередующихся вертикальных полос.%Все пушки ЭЛТ такого типа находятся на одной линии, причем пушка зеленого цвета находится на главной оптической оси, а Р и Б сдвинуты относительно ее на 1,5 градуса.Плюсы:1.отсутствует необходимость сведения лучей по вертикали.2. Меньше искажения растра (изображение формируется попиксельно).3.Большая прозрачность маски — больше яркости.Минусы:Меньше площадь растры на дисплее.ЭЛТ с апертурой решеткой (Aperture grill) - ОС1. Этот ЭЛТ имеет одну пушку но с тремя планарно-расположенными катодами. За счет этого удалось повысить точность фокусировки лучей их сведения.ОС2. Использование не электромагнитной, а электростатической системы сведения лучей по горизонтали.В ЭЛТ установлены пластины, на которые подаются высоковольтные импульсы.

Информация о работе Устройства ввода и вывода информации