Этапы развития электронно-вычислительных машин

Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 08:20, реферат

Описание работы

Сегодня уже невозможно представить свою жизнь без персонального компьютера. Обычный системный блок, к которому мы все так давно привыкли, стал абсолютно обыденной вещью. Мы уже не обращаем на него внимания как на чудо техники и на гений человеческого прогресса. Сегодня каждый, сколько бы ему ни было лет, может зайти домой и свободно воспользоваться стандартным пакетом услуг, которые установлены на любом компьютере.

Содержание работы

Введение 3
1. История появления первых вычислительных машин 5
2. Этапы развития вычислительной техники 14
2.1. Ручной этап развития вычислительной техники 14
2.2. Механический этап развития вычислительной техники 16
2.3. Электромеханический этап развития вычислительной техники 18
2.4. Электронный этап развития вычислительной техники 19
3. Четыре поколения развития ЭВМ 22
3.1 Первое поколение ЭВМ 23
3.2 Второе поколение ЭВМ 26
3.3 Третье поколение ЭВМ 29
4.4 Четвертое поколение ЭВМ 33
Заключение 37
Литература 40

Файлы: 1 файл

этапы развития ЭВМ.docx

— 72.82 Кб (Скачать файл)

 

4.4 Четвертое поколение ЭВМ

Конструктивно-технологической  основой вычислительной техники  четвертого поколения становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы, созданные в 70-80-х годах. С  помощью БИС на одном кристалле  можно создать устройства, содержащие тысячи и десятки тысяч транзисторов. Компактность узлов при использовании  БИС позволяет строить ЭВМ  с большим числом вычислительных устройств - процессоров (так называемые многопроцессорные вычислительные системы). При этом, БИС - технология частично использовалась уже и в проектах предыдущего поколения (IBM/360, ЕС ЭВМ ряд-2 и др.).  
 Наиболее важный в концептуальном плане критерий, по которому ЭВМ четвертого поколения можно отделить от ЭВМ третьего поколения, состоит в том, что первые проектировались уже в расчете на эффективное использование современных языков программирования и упрощения процесса программирования для проблемного программиста. В аппаратном отношении для них характерно широкое использование ИС – технологии и быстродействующих запоминающих устройств. Наиболее известной серией ЭВМ четвертого поколения можно считать IBM/370, которая в отличие от не менее известной серии IBM/360 третьего поколения, располагает более развитой системой команд и более широким использованием микропрограммирования. В старших моделях 370-й серии был реализован аппарат виртуальной памяти, позволяющий создавать для пользователя видимость неограниченных ресурсов оперативной памяти. 
Парк всех машин четвертого поколения можно условно разделить на пять основных классов:

  • микро-ЭВМ,
  • персональные компьютеры (ПК), 
  • мини-ЭВМ, специальные ЭВМ,
  • ЭВМ общего назначения,
  • супер-ЭВМ.

 
 В отличие от вычислительной техники  первых трех поколений ЭВМ четвертого поколения правильнее было бы характеризовать  тремя основными показателями:

  • элементной базой (СБИС), 
  • персональным характером использования (ПК),
  • нетрадиционной архитектурой (супер-ЭВМ). 

 
 Элементная база на основе СБИС позволила  достичь больших успехов в  деле миниатюризации, повышения надежности и производительности, позволив создавать  микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Существенные изменения претерпела и архитектура вычислительной техники, рост сложности которой удалось добиться также благодаря элементной базе. Технология производства процессоров на базе БИС и СБИС позволила избавиться от контроля производства средств ВТ со стороны государства и крупных фирм-разработчиков, дав возможность любому, обладающему определенными знаниями и навыками, человеку довольно легко создавать в домашних условиях, что существенно приблизило ее к массовому пользователю и ускорило темпы компьютерной революции и массовой информатизации общества.  
 Феномен персонального компьютера (ПК) восходит к созданию в 1965 г. первой мини-ЭВМ PDP-8, которая появилась в результате универсализации специализированного микропроцессора для управления ядерным реактором. Машина быстро завоевала популярность и стала первым массовым компьютером этого класса; в начале 70-х годов число машин превысило 100 тыс. шт. Дальнейшим важным шагом был переход от мини- к микро- ЭВМ; этот новый структурный уровень вычислительной техники начал формироваться на рубеже 70-х годов, когда появление БИС дало возможность создать универсальный процессор на одном кристалле. Первый микропроцессор Intel-4004 был создан в 1971 г. и содержал 2250 элементов, а первый универсальный микропроцессор Intel-8080, явившийся стандартом микрокомпьютерной технологии и созданный в 1974 г., содержал уже 4500 элементов и послужил основой для создания первых ПК. В 1979 г. выпускается один из самых мощных и универсальных 16-битный микропроцессор Motorolla-68000 c 70.000 элементами, а в 1981 г. - первый 32-битный микропроцессор Hewlett Packard с 450 тыс. элементами. Выпускались и другие микропроцессоры, но отмеченные были лидерами своего времени; на сегодня ВТ располагает большим набором превосходных универсальных микропроцессоров.  
 Первым ПК можно считать Altair-8800, созданный на базе микропроцессора Intel-8080 в 1974 г. Э. Робертсом. Компьютер рассылался по почте, стоил всего 397 $ и имел возможности для расширения периферийными устройствами. Для Altair-8800 П. Аллен и У. Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии они основали теперь знаменитую компанию MicroSoft Inc). Доработка ПК цветным монитором привела к созданию конкурирующей модели ПК Z-2. Через год после появления первого Altair-8800 в производство ПК включилось более 20 различных компаний и фирм. Начала формироваться ПК-индустрия (собственно производство ПК, их сбыт, периодические и непериодические издания, выставки, конференции и т.д.). А уже в 1977 г. были запущены в серийное производство три модели ПК Apple-2 (фирма Apple Computers), TRS-80 (фирма Tandy Radio Shark) и PET (фирма Commodore), из которых в конкурентной борьбе сначала отстающая фирма Apple становится вскоре лидером производства ПК (ее модель Apple-2 имела огромный успех). К 1980 г. корпорация Apple выходит на Уолл-стрит с самым большим акционерным капиталом и годовым доходом в 117 млн. $. Такой успех позволил сформироваться мнению, что именно модель Apple-2 является первым ПК.  
 Но уже в 1981 г. фирма IBM, во избежание потери массового рынка, начинает выпуск своих ныне широко известных серий ПК IBM PC/XT/AT и PS/2,открывших новую эпоху персональной ВТ. Выход на арену ПК-индустрии гиганта IBM ставит производство ПК на промышленную основу, что позволяет решить целый ряд важных для пользователя вопросов (стандартизация, унификация, развитое программное обеспечение и др.), которым фирма уделяла большое внимание уже в рамках производства серий IBM/360 и IBM/370.  
 Супер-ЭВМ характеризуются как высокой производительностью ( 2х107 оп/с.), так и нетрадиционной архитектурой. Развитие супер-ЭВМ обусловлено необходимостью решения сложных задач, требующих большого времени и не поддающихся обработке вычислительными средствами других классов. К таким задачам относятся многие задачи математической физики, космологии и астрономии, моделирования сложных систем и др. Наряду с этим вполне естественным желанием является получить ЭВМ с максимальным быстродействием - именно ускорение счета лежало в основе создания вычислительной техники вообще.  

 

 

Заключение

Проделав свое исследование на основе полученных из интернета статей об истории развития ЭВМ, я могу заключить, что ЭВМ развивалось достаточно быстро. Цель, которую я ставил перед собой в начале моего исследования (проанализировать все основные этапы развития ЭВМ) считаю достигнутой. 
На начальном этапе появление ЕС ЭВМ привело к унификации компьютерных систем, позволило установить начальные стандарты программирования и организовывать широкомасштабные проекты, связанные с внедрением программ. До этого программы, как правило, эксплуатировались исключительно организацией-разработчиком, а внедрение было затруднительным из-за разнородности компьютерной техники по стране. Без подобного рода унификации постановка глобальных задач типа АСУ была бы просто невозможна. 
В целом, внедрение ЕС ЭВМ позволило сократить отставание отечественной компьютерной отрасли от США по ряду позиций (проектирование архитектуры аппаратно-программных комплексов, разработка программного обеспечения, системотехника, применение ЭВМ для управления данными), а по отдельным направлениям даже выйти на лидирующие позиции (разработка матричных процессоров, разработка эффективных методов интеграции нескольких ОС на одной ЭВМ). 
Ценой этого было повсеместное свёртывание собственных оригинальных разработок и попадание в зависимость от идей и концепций фирмы IBM. 
В 1980-е годы повсеместное внедрение ЕС ЭВМ превратилось в серьёзный тормоз для развития отрасли. После дорогостоящих и заранее спланированных закупок руководители предприятий были вынуждены эксплуатировать морально устаревшие компьютерные системы. Параллельно развивались системы на малых машинах и на персональных компьютерах, которые становились всё более и более популярны. В то время мало кто имел взвешенную оценку достоинств и недостатков различных архитектур, и точки зрения, как правило, сводились к двум полярным мнениям: "персоналки — это несерьёзно, солидные задачи надо решать на солидных машинах" и "большие ЭВМ — это каменный век, мы сейчас быстренько всё перепишем на персональном компьютере". К сожалению, у части специалистов такая однобокость во взглядах не преодолена до сих пор. 
На позднейшем этапе, в 1990-е годы, наступил переломный момент. Отечественная промышленность, вступившая в глубокий экономический и структурный кризис, не смогла создать ни аналогов, ни заменителей ЕС ЭВМ на новой элементной базе. В итоге произошёл полный переход на импортные компьютеры и окончательное свёртывание программы по разработке отечественных компьютеров, возникли проблемы переноса технологий на современные компьютеры, модернизации технологий, трудоустройства и переквалификации сотен тысяч специалистов.  
 За достаточно короткий промежуток времени Электронно-вычислительная техника сделала большой скачок вперед. Я уже не застал (равно как и все мое поколение) тех огромных компьютеров, которые занимали целые залы и аудитории, а иногда даже этажи. Те компьютеры работали медленно и создавались исключительно в научных целях. Они упрощали подсчеты человека и брали часть его функций (на момент появления первой ЭФМ лишь малую часть) на себя. Компьютеры изначально разрабатывались как помощники человека. Сегодня я могу с уверенностью переделать известную фразу "Собака – друг человека" в "Компьютер – друг человека". Если совсем недавно техника была подчиненным человека и выступала с позиции крестьянина рядом со своим помещиком, то теперь этот "крестьянин" стал выпрямляться и не далек тот день, когда "крепостное право" будет отменено. За те 50 лет, которые ЭВТ развивалась, компьютеры стали незаменимым подспорьем в жизни человека: ракеты запускаются в космос по показаниям компьютеров, погода на завтра определяется мощнейшим компьютером, скорость обработки данных которого запредельно высока даже для понимания продвинутого юзера, фабрики, заводы, даже больницы – везде важен процесс автоматизации. Сегодня многие операции проводятся специально созданными машинными роботами, которые появились на свет благодаря последним компьютерным разработкам. Да и невозможно человеку современному представить свою жизнь без ПК. Человечество не стоит на месте, и прогресс неумолимо бежит вперед. За последние сто лет мы так далеко ушли вперед, что тяжело даже осознать, что на это потребовалось всего лишь 100 лет.

 

Литература

1. Информатика для юристов и экономистов. / Под ред. С.В. Симоновича. СПб., 2002.

2. Оладьев В.З. Основы компьютерной информатики. - Таллинн, 1999.

3. Основы информатики / Под ред. А.Н. Морозевича. - Мн., 2001.

4. Фигурнов В.Э. IBM PC для пользователя. - М., 2002.

5. Шафрин Ю. Информационные технологии. - М., 2000.


Информация о работе Этапы развития электронно-вычислительных машин