Звезды и их эволюция

Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 17:06, контрольная работа

Описание работы

Мир звезд огромен и разнообразен. За тысячи лет до нас это знали внимательные наб¬людатели неба — пастухи, мореходы, проводники караванов. Они отличали звезды, уз¬навали, давали им имена, считая, однако, вечными и неизменными, драгоценными гвоз¬дями, вбитыми в небесную твердь. Но мир звезд изменчив, как и мир людей. У каждой своя судьба. Одни живут долго и тихо угаса¬ют. Другие, эволюционируя быстро, бурно заканчивают жизнь в огне колоссальной вспышки. данная работа посвящена эволюции звезд.

Файлы: 1 файл

Концепции современного естествознания.docx

— 175.94 Кб (Скачать файл)

14. Звезды и их эволюция

 

 

Введение

Мир звезд огромен и  разнообразен. За тысячи лет до нас  это знали внимательные наблюдатели неба — пастухи, мореходы, проводники караванов. Они отличали звезды, узнавали, давали им имена, считая, однако, вечными и неизменными, драгоценными гвоздями, вбитыми в небесную твердь. Но мир звезд изменчив, как и мир людей. У каждой своя судьба. Одни живут долго и тихо угасают. Другие, эволюционируя быстро, бурно заканчивают жизнь в огне колоссальной вспышки.

 

  1. Общая характеристика звезд

 

Звезды – это огромные раскаленные солнца, но столь удаленные  от нас по сравнению с планетами  Солнечной системы, что, хотя, они  сияют в миллионы раз ярче, их свет кажется нам относительно тусклым.

При взгляде на ясное ночное небо вспоминаются строки М.В. Ломоносова:

Открылась бездна, звезд  полна,

Звездам числа нет, бездне – дна.

В ночном небе невооруженным  глазом можно видеть около 6000 звезд. С уменьшением блеска звезд число  их растет, и  даже  простой их счет становится затруднительным. «Поштучно» сосчитаны и занесены в астрономические каталоги все звезды ярче 11-й звездной величины. Их около миллиона. А всего нашему наблюдению доступно около двух миллиардов звезд. Общее количество звезд во Вселенной оценивается в 10 22 .

Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые  большие звезды (сверхгиганты) превосходят  размер солнца в сотни и тысячи раз. Звезды-карлики имеют размеры  Земли и меньше (около 10 км). Предельная максимальная масса звезд равна  примерно 60 солнечным массам, а минимальная  примерно 0,03 солнечной массы.

Весьма различны и расстояния до звезд. Свет звезд некоторых далеких звездных систем идет до нас сотни миллионов световых лет. Самая близкая к нам звезда – Проксима Центавра – маленькая звезда, ее масса в 7 раз меньше, чем масса нашего солнца, а поверхностная температура (3000°) в два раза меньше, чем температура на поверхности Солнца. Поэтому она светит на небе очень тускло и не видна невооруженным глазом, хотя и является самой близкой к нам звездой. Она отстоит от Земли на расстоянии всего 4,2 световых лет. Курьерский поезд, идя без остановок со скоростью 100 км/ч, добрался бы до нее через 40 миллионов лет!

Звезды в космическом  пространстве распределены неравномерно. Они образуют звездные системы: кратные  звезды (двойные, тройные и т.д.); звездные скопления (от нескольких десятков звезд  до миллионов); галактики – грандиозные звездные системы, в которых содержатся миллиарды и сотни миллиардов звезд. Обычно в галактиках звездная плотность также весьма неравномерна. Выше всего она в области галактического ядра.

Большинство звезд находятся  в стационарном состоянии, т.е. не наблюдается  изменений их физических характеристик. Это отвечает состоянию равновесия. Однако существуют и такие звезды, свойства которых меняются видимым  образом. Их называют переменными звездами и нестационарными звездами. Переменность и нестационарность – проявления неустойчивости состояния равновесия звезды. Переменные звезды изменяют свое состояние (блеск, излучение в различных диапазонах электромагнитных волн, магнитное поле и др.) регулярным и нерегулярным образом. В некоторых случаях нестационарность может быть вызвана взаимодействием с другими звездами, перетеканием вещества от одной близкой соседки к другой. Следует отметить также и новые звезды, в которых непрерывно или время от времени происходят вспышки. При вспышках (взрывах) сверхновых звезд вещество звезд в некоторых случаях может быть полностью рассеяно в пространстве.

Основные эмпирические знания о свойствах звезд получены из анализа их спектров, которые несут  информацию о состоянии внешних  слоев звезд. Они позволяют определить химический состав, температуру поверхности, магнитные поля, скорость движения и вращения, расстояние до звезды. Эти  данные соотносятся с теоретическими моделями, расчетами. В настоящее  время разработана детальная  и убедительная теория строения и  эволюции звезд, предсказавшая ряд  фундаментальных закономерностей, присущих звездной материи (например, существование нейтронных звезд).  

 

  1. Звезда – плазменный шар

 

В звездах сосредоточена  основная масса (98-99%) видимого вещества в известной нам части Вселенной. Звезды – мощные источники энергии. В частности, жизнь на Земле обязана  своим существованием энергии излучения  Солнца.

Вещество звезд представляет собой плазму, т.е. находится в  ином состоянии, чем вещество в привычных  для нас земных условиях. Плазма – это четвертое (наряду с твердым, жидким, газообразным) состояние вещества, представляющее собой ионизированный газ, в котором положительные (ионы) и отрицательные заряды (электроны) в среднем нейтрализуют друг друга. В земных условиях плазма встречается очень редко – в электрических разрядах в газах, молнии, в процессах горения и взрыва и др. Около Земли плазма существует в виде солнечного ветра, радиационных поясов, ионосферы и др. Зато во Вселенной в  состоянии плазмы находится подавляющая часть вещества. Кроме звезд, это – межзвездная среда, галактические туманности  и др. Итак, строго говоря, звезда – это не просто газовый шар, а плазменный шар.

Звезда – динамическая, направленным образом изменяющаяся плазменная система. В ходе жизни  звезды ее химический состав и распределение  химических элементов значительно  изменяются. На поздних стадиях развития звездное вещество переходит в состояние  вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах – давлении, теплоемкости и др.), а иногда и нейтронного вещества (пульсары – нейтронные звезды, барстеры – источники рентгеновского излучения и др.)

Высокая светимость звезд, поддерживаемая в течение длительного времени, свидетельствует о выделении  в них огромных количеств энергии. Современная физика указывает на два возможных источника энергии  – гравитационное сжатие, приводящее к выделению гравитационной энергии, и термоядерные реакции, в результате которых из ядер легких элементов  синтезируются ядра более тяжелых  элементов, и выделяется большое  количество энергии.

Как показывают расчеты, энергии  гравитационного сжатия было бы достаточно для поддержания светимости Солнца в течение всего лишь 30 млн лет. Но из геологических и других данных следует, что светимость Солнца оставалась примерно постоянной в течение миллиардов лет. Гравитационное сжатие может служить источником энергии лишь для очень молодых звезд. С другой стороны, термоядерные реакции протекают с достаточной скоростью лишь при температурах, в тысячи раз превышающих температуру поверхности звезд. Так, для Солнца температура, при которой термоядерные реакции могут выделять необходимое количество энергии, составляет, по различным расчетам, от 12 до 15 млн К. Такая колоссальная температура достигается в результате гравитационного сжатия, которое и    «зажигает» термоядерную реакцию. Таким образом, в настоящее время наше Солнце является медленно горящей водородной бомбой. 

 

  1. Межзвездная среда

 

Большую роль в динамике звездных процессов, в звездной эволюции играет межзвездная среда, тесно  связанная со звездами: в межзвездной  среде они рождаются, а «умирая», отдают ей свое вещество. Таким образом, между звездами и межзвездной  средой происходит кругооборот вещества: межзвездная среда → звезды →  межзвездная среда. В ходе такого кругооборота межзвездная среда  обогащается создаваемыми в недрах звезд химическими элементами. Около 85% всех химических элементов тяжелее  гелия возникло на заре нашей Галактики, примерно 15 млрд лет назад. ВТО время происходил интенсивный процесс звездообразования, а время жизни, эволюции массивных звезд было относительно коротким. Лишь 10-13%  химических элементов (тяжелого гелия) имеют возраст менее 5 млрд лет.

Хотя даже в мощные оптические телескопы мы видим в нашем  галактическом пространстве лишь звезды и разделяющую их темную «бездну», на самом деле межзвездное галактическое пространство не является абсолютной пустотой, оно заполнено материей, веществом и полем.

Вопрос только в том, что  каковы формы этой материи, в каком  состоянии здесь находятся вещество и поле.

Межзвездная среда состоит  на 90% из межзвездного газа, который  довольно равномерно перемешан с  межзвездной пылью (около 1% массы  межзвездной среды), а также космических  лучей, пронизывается межзвездными магнитными полями, потоками нейтрино, гравитационного и электромагнитного  излучения. Все компоненты межзвездной среды влияют друг на друга (космические лучи и электромагнитное поле ионизируют и нагревают межзвездный газ, магнитное поле определяет движение газа и др.) Проявляет себя межзвездная среда в ослаблении, рассеянии, поляризации света, поглощении света в отдельных линиях спектра, радиоизлучении, инфракрасном, рентгеновском и гамма-излучениях, через оптическое свечение некоторых туманностей и др.

Основная составляющая межзвездной  среды – межзвездный газ, который, как и вещество звезд, состоит  главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%);  2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.).  Общая масса молекулярного газа в нашей Галактике равна примерно 4 млрд масс Солнца, что составляет примерно 2% всей массы вещества Галактики. Из этого вещества ежегодно образуется примерно 10 новых звезд!

Межзвездный газ существует как в атомарном, так и в  молекулярном состоянии (наиболее плотные  и холодные части молекулярного  газа). При этом он обычно перемешан  с межзвездной пылью (которая  представляет собой твердые мельчайшие тугоплавкие частицы, содержащие водород, кислород, азот, силикаты, железо), образуя  газопылевые образования, облака. Революционное  значение для космохимии имело открытие в газопылевых облаках различных  органических соединений – углеводородов, спиртов, эфиров, даже аминокислот и  других соединений, в которых молекулы содержат до 18 атомов углерода. К настоящему времени в межзвездном газе открыто  свыше 40 органических молекул. Чаще всего  они встречаются в местах наибольшей концентрации газопылевого вещества. Естественно возникает предположение, что органические молекулы из межзвездных  газопылевых облаков могли способствовать возникновению простейших форм жизни  на Земле. Газопылевые облака находятся  под воздействием различных сил (гравитационных, электромагнитных, ударных  волн, турбулентности и др.), которые либо замедляют, либо ускоряют неизбежный процесс их гравитационного сжатия и постепенного превращения в протозвезды.

 

  1. Понятие звездной эволюции

 

Звезды – грандиозные плазменные системы, в которых физические характеристики, внутреннее строение и химический состав изменяются со временем. Время звездной эволюции, разумеется, очень велико, и мы не можем непосредственно проследить эволюцию той или иной конкретной звезды. Это компенсируется тем, что каждая из множества звезд на небе проходит некоторый этап эволюции. Суммируя наблюдения, можно восстановить общую направленность звездной эволюции (по диаграмме Герцшпрунга – Рессела она отображается главной последовательностью и отступлением от нее вверх и вниз). Современная теория строения и эволюции звезд объясняет общий ход развития звезд в хорошем согласии с данными наблюдения.

Основные фазы в эволюции звезды – ее рождение (звездообразование); длительный период (обычно стабильного) существования звезды как целостной  системы, находящейся в гидродинамическом  и тепловом равновесии; и, наконец, период ее «смерти», т.е. необратимое нарушение  равновесия, которое ведет к разрушению звезды или к ее катастрофическому  сжатию.

Ход эволюции звезды зависит  от ее массы и исходного химического  состава, который, в свою очередь, зависит  от времени образования звезды и  ее положения в Галактике в  момент  образования. Чем больше масса звезды, тем быстрее идет ее эволюция и тем короче ее «жизнь». Для звезд с массой, превышающей солнечную массу в 15 раз, время стабильного существования оказывается всего около 10 млн лет. Это крайне незначительное время по космическим меркам, ведь время, отведенное для нашего Солнца, на 3 порядка выше – около 10 млрд лет.

Как по отношению к истории  человечества, так и по отношению  к истории звезд можно говорить об их поколениях. Каждое поколение  звезд имеет особые закономерности формирования и эволюции. Например, звезды первого поколения образовались из вещества, состав которого сложился в начальный период существования  Вселенной – почти 75% водорода и 25% гелия с ничтожной примесью дейтерия и лития. В ходе, по-видимому, достаточно быстрой эволюции массивных  звезд первого поколения образовались более тяжелые химические элементы (в основном вплоть до железа), которые  впоследствии были выброшены в межзвездное  пространство в результате истечения  вещества из звезд или их взрывов. Звезды последующих поколений уже  формировались из вещества, содержащего 3-4%  тяжелых элементов. Поэтому, говоря о звездной эволюции, надо различать по крайней мере три значения этого понятия: эволюция отдельной звезды, эволюция отдельных типов (поколений) звезд и эволюция звездной материи как таковой. В дальнейшем мы будем иметь в виду закономерности эволюции отдельных звезд.

Информация о работе Звезды и их эволюция