Общие сведения о Марсе

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 19:29, реферат

Описание работы

Марс - четвертая по порядку от Солнца большая планета Солнечной системы, далекая и загадочная с незапамятных времен, сегодня стала близкой. Это стало возможным благодаря достигнутым успехам космонавтики.
Испокон века Марс притягивал к себе взоры и мысли землян. Возможность жизни на других планетах Солнечной системы будоражила лучшие умы человечества. В литературе тема Марса тоже очень популярна: Такие произведения как “Аэлита” Алексея Толстого, “Марсианские Хроники” Рэя Брэдбери и “Война Миров” Герберта Уэллса известны практически каждому, а уж перечислить всех авторов, писавших о Марсе, вообще невозможно.

Содержание работы

Введение……………………………………………………3
Глава 1. Общие сведения о Марсе………………………..4
Красная планета………………………………..4
Луны…………………………………………….5
Атмосфера………………………………………7
Глава 2. Строение Марса…………………………………..9
Рельеф поверхности…………………………...9
2.2 Реки и ледники ………………………………..15
2.3 Внутреннее строение………………………….22
Глава 3. Исследование Марса в XX веке…………………25
3.1 Изучение с помощью орбитальных телескопов……26
3.2 Исследование Марса космическими аппаратами…………………………………………………26
Глава 4. Современное изучение Марса…………………..30
4.1 Планируемые миссии…………………………30
4.2 Пилотируемые полет на Марс…………….….30
Глава 5. Спутники изучающие Марс……………………..31
Заключение…………………………………………………38
Список использованной литературы……………………...40

Файлы: 1 файл

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ.docx

— 453.17 Кб (Скачать файл)

Белые полярные шапки Марса - одна из наиболее примечательных черт на диске планеты, хорошо наблюдаемых в телескоп. Аналогичным образом выделялись бы полярные области Земли при наблюдении, например с Марса, особенно - далеко простирающиеся к средним широтам обширные заснеженные пространства северного полушария зимой. Однако до недавнего времени велись споры о том, из чего состоят марсианские шапки - из обычного, водяного льда или твердой углекислоты. Последнее предположение связано с тем, что на полюсах отмечается самая низкая температура поверхности Марса, 148K=-125oC. А это как раз соответствует температуре замерзания углекислоты, из которой преимущественно состоит марсианская атмосфера. Измерения с космических аппаратов показали, что в общем-то правы были защитники как той, так и другой гипотезы, однако в основной своей массе полярные шапки образованы обычным льдом. Оказалось, что интенсивный рост шапок происходит в период с начала марсианской осени до начала весны в соответствующем полушарии за счет конденсации из атмосферы углекислоты. При этом образуется слой сухого льда толщиной в несколько сантиметров, быстро исчезающий с наступлением весны. После этого остается нестаивающая за лето часть, имеющая температуру около -70oC(203K), то есть значительно превышающую температуру замерзания углекислоты. Она-то и состоит в основном из обычного льда, покрываемого, как и прилегающая поверхность, слоем углекислоты в зимнее время. Весьма вероятно, что шапки содержат также обширные включения газовых гидратов - так называемых клатратов, представляющих собой соединения, которые образуются при внедрении молекул углекислого газа (или других газов) в пустоты кристаллической структуры водяного льда. По внешнему виду они напоминают спрессованный снег и хорошо известны прежде всего как побочный продукт при добыче природного газа. На Марсе клатраты, возможно, образуются и в средних широтах ночью, особенно внутри углублений и кратеров,  как это было замечено на фотопанорамах "Викингов". С восходом Солнца конденсат быстро сублимирует. Измеренные температуры как раз хорошо соответствует фазовому переходу при образовании и исчезновении клатратов CO2. Тем не менее, окончательного отождествления пока не сделано, поэтому как эти, так и другие обширные белые образования на дне некоторых кратеров, обнаруживаемые на снимках с орбитальных аппаратов, получили пока условное название "белая порода".

Толщина северной полярной шапки может быть сопоставимой с толщиной ледяного панциря Антарктиды, достигающей 4,3 км, а отношение площади этого панциря к площади земной поверхности меньше, чем нестаивающей части шапки к площади поверхности Марса. Но лед Антарктиды содержит свыше 90% запасов всей пресной воды на Земле, и нельзя исключить, что подобный резервуар существует и на Марсе.

Все, что связано с водой на Марсе  чрезвычайно важно для понимания  общих проблем планетной эволюции. Сейчас о предполагаемых водных резервуарах ученые судят только по косвенным данным, прямых доказательств их существования пока нет. Эти доказательства могут дать только эксперименты.

 

 

 

 

 

 

Внутреннее строение

Характерные особенности геологических  структур на марсианской поверхности служат хорошим критерием для рассчитываемых эволюционных моделей планеты, занимающей по своим размерам промежуточное положение между Луной и Меркурием, с одной стороны, и Землей и Венерой - с другой. Прежде всего, существует ряд свидетельств того, что, подобно остальным планетам земной группы, на Марсе также происходила ранняя дифференциация вещества его недр. На это указывают сохранившиеся следы первичной магматической деятельности на отдельных наиболее древних участках поверхности, химический состав поверхностных пород. Однако для Марса значительнее труднее удовлетворить требованию высокой начальной температуры центральных областей, с тем, чтобы обеспечить их расплавление, если принять во внимание только металлсиликатное фракционирование первичного вещества, позволяющее объяснить его низкую среднюю плотность за счет общей обедненности железом. Обойти эту трудность можно, приняв также во внимание вероятное фракционирование железа и серы и удержание повышенного содержания халькофильных элементов при относительно низких температурах конденсации на орбите Марса. Это позволяет допустить, что образовалось ядро из смеси железа с сернистым железом в условиях сравнительно невысоких температур (около 1300 K), отвечающих эвтектике Fe-FeS. Допуская также, что калий вошел в сульфидную фазу, можно предположить, что благодаря распаду 40K сохранились тепловые источники в ядре.

Поскольку значительная доля железа связывалась  серой, можно думать, что мантия Марса также обогащена сернистым железом и что в составе ее силикатов больше минералов с повышенным содержанием железа, чем магния. Несомненная обогащенность железом обнаружена и в слагающем веществе поверхностных пород. Это приводит к предположению, что гравитационная дифференциация вещества Марса не была столь глубокой и полной, как на других планетах земной группы. Именно с этим обстоятельством - недостаточно полным выделением металлического железа - связано его повышенное содержание в марсианских породах, в то время как общее относительное содержание железа в веществе Марса не превышает ~25%, что существенно меньше, чем у Земли, Венеры и, конечно, Меркурия. Сильное ограничение на степень дифференциации Марса накладывает и величина безразмерного момента инерции I=0,375, определенная с использованием данных измерений параметров орбит искусственных спутников планеты. Она указывает на сравнительно небольшое отклонение от однородного распределения плотности, что согласуется с представлениями о наличии сравнительно небольшого и не очень плотного ядра. Его радиус оценивается равным примерно 800-1500 км, масса составляет менее 9% от полной массы планеты.

В современных  моделях тепловой эволюции Марса  полная теплогенерация обеспечивается при отношениях долгоживущих изотопов, примерно соответствующих солнечным, и несколько повышенном содержании калия. Формирование железо-сульфидного  ядра начинается вскоре после завершения аккумуляции и продолжается ~1 млрд. лет, чему отвечает период раннего вулканизма. Приблизительно еще один миллиард лет спустя образуется зона частичного плавления мантийных силикатов, медленно расширяющаяся внутрь. Этот этап характеризуется интенсивной вулканической и тектонической деятельностью, образованием базальтовых равнин и вулканических щитов. На рубеже этого периода (около 3 млрд. лет назад) Марс достигает вершины своей эволюции, после чего постепенно начинает охлаждаться. В течение последующего 1 млрд. лет поддерживается примерно постоянный уровень термической энергии, происходят глобальные тектонические процессы наибольшего масштаба, образование громадных вулканов на щитах.

Сейчас  Марс продолжает остывать. Тепловой поток  в современную эпоху оценивается равным 40 эрг/см2*с - приблизительно таким же, как на докембрийских щитах на Земле. Толщина литосферы, очевидно, достигает нескольких сотен километров, в том числе около 100 км составляет ее верхний слой - марсианская кора. Сравнительно большая толщина литосферы дает основание предполагать умеренную сейсмическую активность Марса в настоящее время. С этими представлениями согласуются результаты экспериментов по пассивной сейсмике на посадочном аппарате "Викинг-2": приблизительно за год работы на поверхности был зарегистрирован только один слабый толчок с неглубоким эпицентром, вероятно, вызванный не тектоническими процессами, а падением метеорита в нескольких десятках километров от аппарата.

Сохранение  у планеты полностью или частично расплавленного ядра подтверждают данные измерений Ш.Ш.Долгиновым и его сотрудниками магнитного поля Марса на автоматических станциях "Марс-2", "Марс-3" и "Марс-5". Эти измерения привели к выводу, что Марс обладает собственным магнитным полем, топология которого соответствует полю дипольной природы, с напряженностью у поверхности на экваторе около 65 гамм, хотя, как и в случае Венеры, этот вывод разделяется не всеми исследователями. По сравнению с геомагнитным, это поле слабое, что при одинаковых параметрах вращения обеих планет могло бы быть следствием небольшой жидкой зоны в ядре. Если же, как полагает, например, американский космофизик К.Рассел, это поле целиком индуцированного происхождения, то даже это допущение придется отвергнуть и признать, что ядро, скорее всего целиком затвердело. Нельзя, впрочем, исключить, что в своей космогонической истории Марс переживает период инверсии магнитного поля, какой, судя по палеонтологическим данным, не раз переживала в прошлом Земля.

 

 

 

Исследование Марса в  XX веке

 

В 1969г. организован Международный  планетный патруль (англ. International Planetary Patrol Program) в составе семи обсерваторий расположенных сравнительно равномерно по долготе и недалеко от экватора. Цель патруля наблюдение широкомасштабных атмосферных явлений и деталей поверхности планет а также получение непрерывных серий снимков. Обсерватории патруля оснащены однотипными телескопами и фотокамерами с электронным оборудованием,обеспечивающим заданную длительность экспозиций, регистрацию даты и времени снимка и других его характеристик. Обсерватории патруля следят за облаками и пыльными бурями а также сезонными изменениями поверхности Марса. Проведены подробные наблюдения марсианских пыльных бурь 1971 и 1973 годов. Полученные изображения отражают марсианские сезонные изменения и показывают, что большинство марсианских пылевых бурь происходят, когда планета находится ближе всего к Солнцу.

 

 

 

 

 

 

Изучение с помощью  орбитальных телескопов

 

Возможности космического телескопа Хаббл (HST, от Hubble Space Telescope, или КТХ — Косми́ческий телеско́п «Хаббл») были использованы для систематического исследования Марса, при этом были получены фотографии Марса с самым высоким разрешением из когда-либо полученных на Земле. КТХ может создать образы полушарий, что позволяет промоделировать погодные системы. Наземные телескопы, оснащенные ПЗС, могут сделать фотоизображения Марса высокой чёткости, что позволяет регулярно проводить мониторинг планеты погоды в оппозиции.

Рентгеновское излучение  с Марса, впервые обнаруженное астрономами  в 2001 году с помощью космической рентгеновской обсерватории «Чандра», состоит из двух компонентов. Первая составляющая связана с рассеиванием в верхней атмосфере Марса рентгеновских лучей Солнца, в то время как вторая исходит от взаимодействия между ионами, в результате чего происходит обмен зарядами.

 

 

Исследование Марса космическими аппаратами

 

С 1960-х годов к Марсу для подробного изучения планеты с орбиты и фотографирования поверхности были направлены несколько автоматических межпланетных станций. Кроме того, продолжалось дистанционное зондирование Марса с Земли в большей части электромагнитного спектра с помощью наземных и орбитальных телескопов, например в инфракрасном для определения состава поверхности, в ультрафиолетовом и субмиллиметровом диапазонах проводились наблюдения за составом атмосферы, и в радиодиапазоне проводились измерения скорости ветра. К Марсу было запущено много космических аппаратов. Самые известные из них: Викинги, Маринеры, Марс (серия советских космических аппаратов), Марс Глобал Сервейор, марсоходы Соджонер (1997 год), Спирит

(с 4 января 2004 года до 22 марта 2010 года), Опортьюнити (с 25 января 2004 года и до сих пор), Кьюриосити (c 6 августа 2012 года и до сих пор) и др.

Первым космическим аппаратом  исследовавшим Марс с пролётной  траектории стал американский Маринер-4. Первым искусственным спутником Марса стал американский Маринер-9. Первым совершил посадку на Марс спускаемый аппарат советской автоматической межпланетной станции Марс-3 в 1971 году. Попытки мягкой посадки автоматической марсианской станции спускаемыми аппаратами советских АМС Марс-2, Марс-3 в 1971 году и Марс-6, Марс-7 в 1973 году были неудачными. Первая работающая автоматическая марсианская станция являлась частью американского Викинга-1. Станция после мягкой посадки в 1976 году передала первые снимки с поверхности Марса, провела первые непосредственные исследования атмосферы и грунта. Основными задачами изучения Марса с орбиты искусственных спутников в 1970-е годы являлось определение характеристик атмосферы и фотографирование поверхности. Было предусмотрено изучение магнитного и гравитационного полей планеты, её тепловых характеристик, рельефа и прочего, для чего были запущены советские автоматические межпланетные станции «Марс-2» и «Марс-3». В районе посадки станции предполагалось определение физических характеристик грунта определение характера поверхностной породы, экспериментальная проверка возможности получения телевизионных изображений окружающей местности, и так далее. Спускаемый аппарат «Марс-3» совершил мягкую посадку на поверхность «красной планеты» между областями Электрис и Фаэтонтис в районе с координатами 45° ю. ш. и 158° з. д. На его борту был установлен вымпел с изображением герба СССР. Через 1 минуту 30 секунд после посадки АМС была приведена в рабочее состояние, и в 16 часов 50 мин. 35 сек. началась передача видеосигналов с поверхности планеты. Они были приняты и записаны на борту искусственного спутника «Марс-3» и затем в сеансах радиосвязи переданы на Землю. Принятые с поверхности Марса видеосигналы были непродолжительными (около 20 сек.) и резко прекратились. В комплексе экспериментов, проводившихся на спутниках «Марс»-2 и 3, фотографированию планеты отводилась вспомогательная роль, связанная главным образом с обеспечением привязки результатов измерений в других спектральных интервалах. Вместе с тем, снимки, выполненные на «Марсе-3» с больших расстояний, позволили уточнить оптическое сжатие планеты (отличающееся от динамического), строить профили рельефа по изображению края диска на участках большой протяженности, получить цветные изображения диска Марса путём синтезирования фотоизображений, сделанных с различными светофильтрами.

Американские аппараты «Викинг» изучали Марс в течение нескольких лет (с 1976 года) как с орбиты, так и непосредственно на поверхности. В частности, были проведены эксперименты по обнаружению микроорганизмов в грунте, не давшие положительного результата. Впервые был сделан химический анализ грунта и переданы фотографии поверхности. Посадочные аппараты длительнрое время вели наблюдения марсианской погоды, а по данным орбитальных модулей была составлена подробная карта Марса.

Информация о работе Общие сведения о Марсе