Малые тела Солнечной системы

Автор работы: Пользователь скрыл имя, 26 Февраля 2014 в 21:57, реферат

Описание работы

В конце XVIII века Тициус и Боде независимо друг от друга подметили закономерность в ряде чисел, выражающих средние расстояния планет от Солнца. Пятый член этого ряда не соответствовал никакой планете. 1 января 1801 года итальянский астроном Джузеппе Пиацци случайно открыл звезду, прямое восхождение и склонение которой заметно изменялось за сутки наблюдений. Гаусс вычислил орбиту этого астрономического объекта, большая полуось которого оказалась равной 2,77 а.е.; стало понятно, что открыта планета между Марсом и Юпитером. Ее назвали Церера в честь древнеримской богини плодородия.

Файлы: 1 файл

Малые тела Солнечной системы часть 2. Спирина М.Г..docx

— 3.89 Мб (Скачать файл)

Самая внешняя, самая разреженная и самая горячая часть солнечной атмосферы – корона. Она прослеживается от солнечного лимба до расстояний в десятки солнечных радиусов. Несмотря на сильное гравитационное поле Солнца, это возможно благодаря огромным скоростям движения частиц, составляющих корону. Корона имеет температуру около миллиона градусов и состоит из высокоионизированного газа. Возможно, причиной такой высокой температуры являются поверхностные выбросы солнечного вещества в виде петель и арок. Миллионы колоссальных фонтанов переносят в корону вещество, нагретое в глубинных слоях Солнца.

Яркость короны в миллионы раз меньше, чем фотосферы, поэтому корону можно видеть только во время полного солнечного затмения, либо с помощью коронографа. Наиболее яркую ее часть принято называть внутренней короной. Она удалена от поверхности Солнца на расстояние не более одного радиуса. Внешняя корона Солнца имеет протяженные границы.

Рисунок 35

Рентгеновский снимок Солнца в 1973 году. Во внутренней короне видна темная корональная «дыра».


Рисунок 36

Вид корональных лучей заметно меняется от минимума к максимуму солнечной активности.


 

Важной особенностью короны является ее лучистая структура. Корональные лучи имеют самую разнообразную форму. С одиннадцатилетним циклом Солнца меняется общий вид солнечной короны. В эпоху минимума корона имеет округлую форму, она как бы «причесана». В эпоху максимума корональные лучи раскинуты во все стороны.

 

 
Вспышки и протуберанцы

Рисунок 37  Солнечная вспышка. Снимок сделан с использованием светофильтра.





Часто, особенно когда на Солнце имеются большие группы пятен, в хромосфере возникают вспышки. Они похожи на огромные взрывы, длящиеся всего лишь несколько минут. За несколько минут в маленькой области высвобождается энергия порядка 100 000 миллиардов кВт/час: столько же тепла поступает от Солнца на Землю в год! Причины вспышек пока еще плохо изучены; по-видимому, они вызываются резким изменением магнитного поля в хромосфере. Энергия вспышки выделяется в вершине корональной петли, затем распространяется в сторону фотосферы, вызывая нагрев и испарение более холодных слоев. При этом излучение резко возрастает не только в видимой области спектра, но и в ультрафиолете, и в рентгеновской области спектра, увеличивается поток космических лучей. Вспышки вызывают изменения в магнитном поле Земли и могут даже повредить системы электроснабжения.

Часто, особенно когда на Солнце имеются большие группы пятен, в хромосфере возникают вспышки. Они похожи на огромные взрывы, длящиеся всего лишь несколько минут. За несколько минут в маленькой области высвобождается энергия порядка 100 000 миллиардов кВт/час: столько же тепла поступает от Солнца на Землю в год! Причины вспышек пока еще плохо изучены; по-видимому, они вызываются резким изменением магнитного поля в хромосфере. Энергия вспышки выделяется в вершине корональной петли, затем распространяется в сторону фотосферы, вызывая нагрев и испарение более холодных слоев. При этом излучение резко возрастает не только в видимой области спектра, но и в ультрафиолете, и в рентгеновской области спектра, увеличивается поток космических лучей. Вспышки вызывают изменения в магнитном поле Земли и могут даже повредить системы электроснабжения.

Другим проявлением солнечной активности является появление плазменных образований в магнитном поле солнечной атмосферы – волокон. Если эти волокна видны на краю Солнца, то они наблюдаются как протуберанцы.

Рисунок 38

Протуберанец.





Протуберанцами называются огромные образования в короне Солнца. Плотность и температура протуберанцев такая же, как и вещества хромосферы, но на фоне горячей короны протуберанцы – холодные и плотные образования. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы движутся с еще большими скоростями и внезапно взрываются; они называются эруптивными.

Протуберанцами называются огромные образования в короне Солнца. Плотность и температура протуберанцев такая же, как и вещества хромосферы, но на фоне горячей короны протуберанцы – холодные и плотные образования. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы движутся с еще большими скоростями и внезапно взрываются; они называются эруптивными.

Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км. Дугообразные протуберанцы достигают размеров 800 000 км. Зарегистрированы и рекордсмены среди протуберанцев, их размеры превышали 3 000 000 км.  

Корональные петли и арки высотой в сотни тысяч километров состоят из отдельных тонких петелек, скрученных друг с другом, как нити в веревке. Выбросы плазмы из глубинных слоев Солнца, согласно последним исследованиям, являются основной причиной разогрева солнечной короны.

Рисунок 39

Корональные арки.


 

Жизненный путь рядовой звезды

   




Красные гиганты и белые карлики

Красные гиганты и белые карлики

Обычно звезда находится на главной последовательности 9–10 миллиардов лет. После того как она израсходует содержащийся в центральной части водород, внутри звезды происходят крупные перемены. Гелиевое ядро начнет сжиматься, его температура повысится настолько, что начнутся реакции с большим энерговыделением (при температуре 2∙107 К, например, начинается горение гелия). В прилегающем к ядру слое, как правило, остается водород, возобновляются протон-протонные реакции, давление в оболочке существенно повышается, и внешние слои звезды резко увеличиваются в размерах. На диаграмме Герцшпрунга – Рассела звезда начинает смещаться вправо – в область красных гигантов.

 
 

Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды быстро проходят свой жизненный путь, заканчивая его эффектным взрывом. Звезды более скромных размеров, включая и Солнце, наоборот, в конце жизни, после стадии красного гиганта сжимаются, сбрасывают оболочку, превращаясь в белые карлики.

Рисунок 40

На планете, вращающейся вокруг старого гиганта.


Рисунок 41

Сравнительные размеры Земли и белых карликов.


Белые карлики – результат эволюции звезд, похожих на Солнце. Они имеют массу, не превышающую 1,2 M , радиус в 100 раз меньше солнечного, и, следовательно, плотность в миллион раз больше солнечной.

Рисунок 42

Стакан вещества, взятого с белого карлика, весит тысячи тонн.


Стакан вещества белого карлика весит тысячи тонн. Вещество белых карликов находится в состоянии нерелятивистского вырожденного газа, при котором давление внутри звезды не зависит от температуры, а зависит только от плотности.

В процессе превращения из красного гиганта в белый карлик звезда может сбросить свои наружные слои, как легкую оболочку, обнажив при этом ядро. Газовая оболочка ярко светится под действием мощного излучения звезды. Когда такие светящиеся газовые пузыри были впервые обнаружены, они были названы планетарными туманностями, поскольку они часто выглядят как планетные диски. За сотни тысяч лет такие туманности полностью рассеиваются в пространстве, а плотные ядра за миллиарды лет просто угасают, превращаясь в абсолютно мертвые останки – черные карлики.

Рисунок 43

Планетарная туманность Бабочка.


 

Рисунок 44

Планетарная туманность NGC 6751.




Рисунок 45

Планетарная туманность Улитка.


Рисунок 46

Планетарная туманность Эскимос.


 

Эволюция массивных звезд

   




Сверхновые

Сверхновые

Совсем иначе эволюционируют массивные звезды. В центральных областях звезды при высоких температурах происходят реакции непосредственного слияния тяжелых ядер, после чего происходит эффектный взрыв сверхновой.

Модель. Реакции в горячих звездах.


Вспышки сверхновых – один из самых мощных катастрофических природных процессов. Фантастическое выделение энергии – столько, сколько Солнце вырабатывает за миллиарды лет – сопровождает взрыв сверхновой. Сверхновая звезда может излучать больше, чем все звезды галактики вместе взятые.

Сверхновыми называются звезды, взрывающиеся и достигающие в максимуме абсолютной звездной величины от –11m до –18m. Плотное ядро коллапсирует, увлекая за собой в свободное падение к центру наружные слои звезды. Когда ядро сильно уплотняется, его сжатие прекращается, и на верхние слои обрушивается встречная ударная волна, а также выплескивается энергия огромного числа нейтрино. В результате оболочка разлетается со скоростью 10 000 км/с, обнажая нейтронную звезду либо черную дыру. При вспышке сверхновой выделяется энергия 1046 Дж.

По характеру спектра вблизи эпохи максимума различают два типа сверхновых. Сверхновые I типа вблизи максимума отличаются непрерывным спектром, в котором не видно никаких линий. Позднее появляются в спектре линии поглощения, сильно расширенные. При вспышке сверхновой I типа от звезды отрывается оболочка с массой порядка 0,3–1 М , которая расширяется в межзвездное пространство.

Рисунок 47

Сверхновые I типа.


Рисунок 48

Сверхновые II типа.


Сверхновые II типа характеризуются спектром, богатым водородными линиями. Их светимость меняется в широких пределах, а после максимума падает более резко, чем у сверхновых I типа.

Замечено, что в эллиптических галактиках, состоящих из небольших красных звезд, вспыхивают сверхновые I типа. В спиральных галактиках, где в рукавах много молодых массивных сверхгигантов спектральных классов О и В, вспыхивают сверхновые II типа.

Рисунок 49  Центр туманности Гама, оставшейся после взрыва сверхновой находится в созвездии Паруса.


Рисунок 50

Сверхновая 1987A в Большом Магеллановом Облаке расположена там, где на старых фотографиях была лишь звездочка 12-й величины. Ее величина в максимуме достигла 2,9m, что позволяло легко наблюдать сверхновую невооруженным глазом.


 

Рисунок 51

Сверхновая 1987A через 4 года после вспышки. Кольцо светящегося газа в 1991 году достигло 1,37 светового года в поперечнике.




Рисунок 52

Кассиопея A – сильнейший радиоисточник ночного неба. Это остатки после взрыва сверхновой 1667 года, спрятанной за мощными пылевыми облаками.


 

 

Сверхновая сохраняет свою максимальную яркость около месяца, после чего начинает угасать. Широко известны остатки вспышек сверхновых – тонко-волокнистые туманности NGC 6960 и NGC 6992-5 в созвездии Лебедя. Эти сверхновые вспыхнули несколько десятков тысяч лет назад. Известна также туманность Кассиопея А. Но самая знаменитый остаток сверхновой в нашей Галактике – Крабовидная туманность.

Информация о работе Малые тела Солнечной системы