Электрокоагулятор для очистки нефтьсодержащих сточных вод

Автор работы: Пользователь скрыл имя, 14 Мая 2015 в 22:24, курсовая работа

Описание работы

Сточные воды предприятий нефтепереработки и нефтехимии высокотоксичны и при существующих объемах водоотведения представляют собой серьезную экологическую опасность. Очистка этих стоков до параметров, предусмотренных действующими в настоящее время нормативными требованиями, традиционными способами практически невозможна. Кроме того, в некоторых случаях высокая загрязненность воды, использующейся в технологических процессах, приводит к значительным экономическим потерям, часто необратимым

Содержание работы

Введение…………………………………………………………………………..3
Глава 1. Актуальность проблемы очистки сточных вод………………………..4
1.1 Методы очистки сточных вод нефтеперерабатывающего предприятия…..4
Глава 2. Конструктивные особенности современных электрокоагуляционных установок (анализ научно-технической литературы)………………………...7
Глава 3. Общие сведения о процессе электрокоагуляции……………………9
Глава 4. Описание конструкции электрокоагулятора………………………...14
Глава 5. Расчет и проектирование электрокоагулятора………………………19
5.1 Чертеж электрокоагулятора………………………………………………22
Выводы………………………………………………………………………….25
Список использованной литературы…………………………………………..25

Файлы: 1 файл

Gabdullina_Leysan_gr_3412.doc

— 231.00 Кб (Скачать файл)

Чтобы получить максимальный эффект электрокоагуляции и ультрафильтрации, физико-химические методы очистки вод нужно подбирать в зависимости от типов загрязнителей и уровня концентрации в самой очищаемой жидкости тяжелых металлов. При работе с эмульсиями, которые невозможно ни растворить, ни выделить в виде осадка, ни вывести из субстанции иными способами, рекомендуется использовать гидродинамический эффект.

Инновационные фильтры для очистки воды с эффектом электрокоагуляции работают на основе электродов, производимой из листовой стали. Впоследствии сталь разрезается на специальные пластины необходимых размеров, а из них собираются требуемые пакеты с элементами перемещения и крепления. Необходимо предусмотреть и наличие внешнего источника, вырабатывающего постоянный ток с очень сложной электротехнической аппаратурой, управлять которой может лишь персонал высокой квалификации. В дальнейшем, в раствор вводятся депассивирующие реагенты либо применяется механическое абразивное очищение электродов.

Высокотехнологичные электрокоагуляционные установки для очистки сточных вод после автомойки также постоянно расширяют круг своего применения. Несмотря на то, что такой способ предполагает большой расход электродов, количество которых зачастую составляет примерно 50-60% от общей массы очищаемой жидкости, все большее количество руководителей используют на своих предприятиях подобные комплексы, поскольку их применение характеризуется максимальным эффектом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 3. Общие сведения о процессе электрокоагуляции.

 

В общем случае электрокоагуляция – процесс, при котором в электролизере с растворимыми анодами (стальными или алюминиевыми) образуется эффективный коагулянт – многозарядные ионы Fe2+ или Al3+ по реакциям:

 

Fe –  2e à Fe2+ (1)

Al – 3e à Al3+ (2)

 

На стальном катоде выделяется водород и образуется щелочь (ионы гидроксила ОН-) по реакции:

 

2 H2O + 2e à H2 + 2 OH- (3)

  Таким образом, СВ в ЭК подщелачивается. При  этом становится возможным перевод  в малорастворимые гидроксиды многих ионов токсичных металлов (ТМ), содержащихся в СВ (Cu2+, Ni2+, Zn2+, Cr3+ и т.д.) по общей реакции:

 

Men+ + n OH- à Me(OH)n¯ (4)

 

Первичные мелкодисперсные частицы гидроксидов в присутствии ионов-коагулянтов довольно быстро превращаются в более крупные хлопья, что облегчает их последующее отстаивание и улучшает качество осветленной воды.

Если в СВ содержатся мельчайшие частицы жировых и масляных загрязнений в виде эмульсий, облегчается их слипание и последующее всплывание. Этому процессу способствует также выделяющийся на катоде водород, т.е. одновременно происходит отделение жировых загрязнений в результате флотации.

Наконец, если в СВ есть соединения весьма токсичного шестивалентного хрома, в ЭК будет происходить их обезвреживание ионами Fe2+, образовавшимися на аноде:

 

3 Fe2+ + Cr(VI) à 3Fe3+ + Cr3+ (5)

 

Продукты реакции (5) взаимодействуют с катодной щелочью:

 

Fe3+ + 3 OH- à Fe(OH)3 ¯ (6)

Cr3+ + 3 OH- à CrOH)3 ¯ (7)

В принципе для протекания реакций (6) и (7) катодная щелочь даже не обязательна, так как гидроксиды трехвалентных железа и хрома могут образовываться уже при рН около 4, т.е. в слабокислой среде.

Свежеосажденные хлопья гидроксидов Fe3+ и Cr3+ сами являются эффективными коагулянтами, а за счет микропористой структуры – еще и неплохими сорбентами, способными очистить СВ от крупных молекул растворенных органических веществ (например, красителей).

Таким образом, существуют три основные области применения электрокоагуляции:

  • очистка СВ от катионов ТМ;
  • очистка СВ от эмульсий;
  • одновременная очистка СВ от шестивалентного хрома и от катионов ТМ.

Наиболее широко электрокоагуляция применяется для последней цели.

Следует отметить и недостатки метода электрокоагуляции: расход электроэнергии; расход металла на изготовление анодов; увеличение общего объема шламов за счет большого количества гидроксида железа. Однако последнее обстоятельство имеет и положительную сторону, так как уменьшается процентное содержание токсичных металлов в шламе.

Электрокоагуляция основана на растворении электродов из алюминия, железа или их сплавов в электролите (сточная вода) под действием электрического тока, с последующим образованием гидроксидов металлов, отличающихся высокой коагуляционной способностью. На поверхности гидрооксидов адсорбируются ионы и молекулы загрязнителя, и происходит коагуляция (слипание) частиц с последующим осаждением. Электрокоагуляцию применяют для удаления из сточных вод тонкодисперсных примесей, например, масел нефтепродуктов, органических взвесей и т.д. Рекомендуется применять этот метод для очистки сточных вод, имеющих нейтральную или слабощелочную реакцию среды (pH= 5-9). Поскольку для осуществления электрокоагуляции требуется значительные затраты электроэнергиии листовой металл, ее можно рекомендовать для локальных систем очистки небольших количеств сточных вод (30-50 м3/ч).

  Электрокоагуляция как  метод превращения примесей грубодиспресное  состояние основывается на множестве  физико-химических процессов, протекающих  в жидкости под воздействием  электрического тока:

  • Электростатическая (поляризационная) коагуляция –дипольное взаимодействие коллоидных частиц за счет дальнодействующих сил притяжения, возникающих при наложении электрического поля.
  • Электрохимическая коагуляция – взаимодействие частиц при изменении их заряд или толщины двойного электрического слоя за счет изменения физико-химических свойств раствора ( pH и Eh) в межэлектродном объеме  или приэлектродных слоях;
  • Электролитическая коагуляция – взаимодействие частиц при введении потенциалообразующих ионов металлов за счет электрохимического растворения электродов;
  • Гидродинамическая коагуляция – слипание частиц за счет увеличения числа их столкновений при перемешивании жидкости в электролизе ( перемешивание жидкости осуществляется как продуктами электрохимических реакции, так и за счет конструктивных приемов);
  • Концентрационная коагуляция – увеличение числа столкновения частиц, приводящих к их слипанию, за счет повышения локальных концентраций частиц в межэлектродном объеме при их транспорте, осаждении на электродах и т.п.

В настоящее время существуют две основные концепции теоретического обоснования механизма коагуляции, обусловленной введением положительных многозарядных ионов железа , гидролизующихся в воде с образованием гидроксидов и других промежуточных соединений;

 Специфическая сорбция многозарядных ионов (Ni2+,Al3+, Fe2+ и т.д.) на частицы с последущим изменением заряда её поверхности, что приводит к коагуляции;

  Образованием малорастворимых  соединений ионов металла с компонентами раствора, которые взаимодействуют с коллоидными частицами, имеющими противоположный заряд поверхности.

    Необходимо отметить, что обе концепции теоретически  и экспериментально недостаточно  обоснованы. Однако многочисленными  экспериментами доказано , что скорость  коагуляции значительно выше  при формировании малорастворимых соединений. Можно предположить преимущественное влияние адгезионного механизма взаимодействия противоположно заряженных поверхностей частиц и гидроксидов. Исходя из этого процесс электрокоагуляции можно разделить на следующие стадии: генерация ионов металла на поверхности электрода; миграция ионов металла с поверхности в объем раствора; образование малорастворимых соединений металла с компонентами раствора; адгезия коллоидных частиц примесей и образовавшихся малорастворимых соединений.

 Гидроксиды металлов образуют хлопья, на которых происходят адсорбция других примесей, содержавшихся в сточных водах. Прирост величины pH может составлять 1-4 единицы.

Удельный расход металлического железа и расход электричества для обезвреживания соответствующих ионов тяжелых металлов.

Табл.1

 

металл

Расход железа г/г удаляемого металла

Теоретический расход электричества, А*ч/г удаляемого металла

Цинк (Zn2+)

2.5-2.88

2.30-2.88

Медь (Cu2+)

3.0-3.5

2.88-3.36

Кадмий(Cd2+)

4.0-4.5

3.84-4.32

Никель(Ni2+)

5.5-6.0

5.30-5.75


Электрокоагулятор включает в себя две секции:

  • Пластинчатый электролизер вертикального исполнения с подводом очищаемой воды снизу вверх;
  • Осветитель.

  Электролиз приводят  при следующих параметрах: плотность  тока на аноде 0,6-1,5 А/дм2 для концентрированных вод и 0,15-0,8 А/дм2 для разбавленный (˃100 мг/л) стоков, напряжение на электродах 12-24 В (при солесодержании менее 500 мг/л), 6-12 В ( при солесодержании более 500 мг/л); продолжительность обработки 60-180 с, материал электродов – низкоуглеродистая сталь(Ст 3, Ст.4 и др); толщина электродов 3-8 мм; расстояние между электродами6-12 мм. Процесс электрокоагуляции может быть значительно интенсифицирован при повышении температуры, обрабатываемой воды до 60-80°С и анодной плотности тока 2-2,5 А/дм2. При этом твердая фаза гидроксидов меняет свою структуру и приобретает ферромагнитные свойства. В последние годы предложено несколько конструкций электролизеров с засыпными анодами из отходов металлообработки.

   В качестве осветителя  используют отстойники, флотаторы-отстойники, флотаторы- осветители. Так как в электродной секции происходит усиление насыщения воды пузырьками выделяющегося водорода, то в осветителе часть скоагулированной твердой фазы всплывает на поверхность воды, а часть оседает на дно.

  При соблюдении указанных  условий и исходной концентрации  каждого из ионов тяжелых металлов, не превышает 30 мг/л, степень очистки от них сточных вод составляет 90-95%. После 24- часового уплотнения объем осадка уменьшается на 20-30%, влажность его при этом достигает 98,2-98,5%.

  Стандартные, или типовые, конструкции аппаратов для электрокоагуляции  отсутствует. Существуют, однако, определенно  сложившиеся схемы конструктивного  оформления электрокоагуляторов.

  В зависимости от  характера движения воды электрокоагулятора можно разделить на однопоточные, многопоточные или вертикальным движением воды. При вертикальном направлении движения воды электрокоагуляторы могут быть противоточные ( подача воды сверху, т.е. в направлении , противоположном движению пузырьков газа, которые обеспечивают флотацию) и прямоточные (подача воды снизу).

  По форме и расположению  электродов электрокоагуляторы  разделяют на аппараты с плоскими  и цилиндрическими электродами, расположенными обычно вертикально. Вертикальное расположение электродов обусловлено большей жесткостью конструкции и неизменностью размеров электродной системы, а также лучшими условиями удаления выделяющихся газов и протекание процесса флотации. Расстояние между электродами в блоке зависит от электропроводности сточной воды и может составлять 6-20 мм. Продолжительность обработки определяется свойствами загрязнений и в среднем может изменяться в пределах 0,5-5 мин.

 Электрокоагуляторы снабжают  вытяжным вентиляционным устройством  для удаления газов, механическими  устройствами для удаления флотируемых продуктов с поверхности очищаемой воды и осадка из нижней части аппарата, а также устройствами для очистки поверхности электродов и межэлектродного пространства.

  Конструктивно электрокоагулятор  обычно представляет собой корпус прямоугольный, или цилиндрической формы , в которую помещают электродную систему – ряд электродов, обрабатываемая вода протекает между электродами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 4. Описание конструкции электрокоагулятора

 

 

 Электрокоагулятор предназначен для генерирования катионов металла (чаще всего алюминия и железа). В результате объемных процессов в межэлектродном пространстве формируются хлопья гидроокисей металлов, для удаления которых необходим блок последующей очистки (флотатор, отстойник, фильтр большой грязеемкости) (рис. 1).

Рис. 1. Схемы электрокоагуляционных установок: а) с последующим отстаиванием; б) с последующим фильтрованием; в) с последующей флотацией (электрокоагулятор); 1 – электродная камера; 2 – отстойник; 3 – промежуточный бак; 4 – насос; 5 – фильтр; 6 – флотационная камера

 

 

    Образование катионов является  результатом электрохимического  растворения металлических анодов                                                 

,                                           

где М – символ металла; n – его валентность.   

 При алюминиевых анодах

Таким образом, в результате поступления в воду требуемого количества катионов железа или алюминия возникает та же ситуация, что и при обработке воды коагулянтами: солями железа или алюминия. Появление в воде многовалентных катионов понижает устойчивость отрицательно заряженных коллоидов, так как уменьшается толщина диффузионного слоя коллоидальной частицы и понижается z – потенциал.

Как известно, устойчивость (стабильность) коллоидов обусловлена взаимодействием межмолекулярных сил взаимного притяжения и отталкивания, возникающих на границе соприкосновения двойных электрических слоев (ДЭС) сблизившихся частиц:                                            

,                                                                      

Информация о работе Электрокоагулятор для очистки нефтьсодержащих сточных вод