Роль озона в атмосфере

Автор работы: Пользователь скрыл имя, 27 Января 2015 в 10:59, курсовая работа

Описание работы

Озоносфера - одна из поверхностных оболочек планеты. Она является составной частью биосферы Земли, включающей в себя совокупность живых организмов и неорганические вещества, находящиеся в общем круговороте.
Из трех стихий, окружающих человека – тверди, воды и воздуха, -–последняя, является самой уязвимой. И не случайно именно в атмосфере появился первый реальный сигнал бедствия. Этот сигнал – озоновая дыра как вестник возможного глобального уменьшения защитного слоя озона в результате антропогенных загрязнении.

Содержание работы

ВВЕДЕНИЕ……………………………………………………………………………………...3
1. ПОЛУЧЕНИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ОЗОНА……………………….……….4
2. ОЗОН В АТМОСФЕРЕ……………………………………………………………….……..5
3. ОЗОНОВЫЙ ЭКРАН………………………………………………………………..………9
4. ОЗОН И КЛИМАТ…………….…………………………………………………………....10
5. ЯДЕРНЫЕ ВЗРЫВЫ И ОЗОН…………………………………………………………....13
6. МЕХАНИЗМ ОБРАЗОВАНИЯ «ОЗОНОВОЙ ДЫРЫ»……………………….……....14
7. ЧЕМ НАМ ГРОЗИТ «ОЗОНОВАЯ ДЫРА»…………………………………………….17
8. ОЗОН И ЗДОРОВЬЕ…………………………………………………………………….....19
9. ПРИМЕНЕНИЕ ОЗОНА…………………………………………………………………..21
ВЫВОДЫ………………………………………………………………………………………23
ЗАКЛЮЧЕНИЕ………………………………….…………………………………………….24
ЛИТЕРАТУРА…………………………………………………………………………………25

Файлы: 1 файл

курсовая по метерологии - Озон.docx

— 61.98 Кб (Скачать файл)

Например, в курсе неорганической химии Г.Реми можно прочитать, что «озонированный воздух хвойных лесов» – выдумка. Так ли это? Ни одно растение озон, конечно, не выделяет. Но растения, особенно хвойные, выделяют в воздух множество летучих органических соединений, в том числе ненасыщенных углеводородов класса терпенов (их много в скипидаре). Так, в жаркий день сосна выделяет в час 16 мкг терпенов на каждый грамм сухой массы хвои. Терпены выделяют не только хвойные, но и некоторые лиственные деревья, среди которых – тополь и эвкалипт. А некоторые тропические деревья способны выделить в час 45 мкг терпенов на 1 г сухой массы листьев. В результате в сутки один гектар хвойного леса может выделить до 4 кг органических веществ, лиственного – около 2 кг. Покрытая лесом площадь Земли составляет миллионы гектаров, и все они выделяют в год сотни тысяч тонн различных углеводородов, в том числе и терпенов. А углеводороды, как это было показано на примере метана, под действием солнечной радиации и в присутствии других примесей способствуют образованию озона. Как показали опыты, терпены в подходящих условиях действительно очень активно включаются в цикл атмосферных фотохимических реакций с образованием озона. Так что озон в хвойном лесу – вовсе не выдумка, а экспериментальный факт.

3. ОЗОНОВЫЙ ЭКРАН.

Одной из наиболее важных оптических характеристик, какого–либо вещества является его спектр поглощения – изменение с длинной волны коэффициента поглощения, то есть способности поглощать проходящие через это вещество излучение.

Спектр поглощения озона обладает несколькими важными особенностями, главной из них является способность сильно поглощать излучение в интервале длин волн 200–320нм.

Область солнечного спектра (а когда говорят о щите, то имеют в виду именно защиту от излучения Солнца) от 200 до 400нм называют биологически активным ультрафиолетом БАУ. При этом выделяются интервалы 320–400нм (УФ-А) и 200–320нм (УФ-Б).

Излучение с длиной волны l, меньше 200нм, хорошо поглощается молекулами кислорода, которых в атмосферном газе много. Поэтому такое излучение не доходит даже до нижней части стратосферы, “застревая” (т.е. поглощаясь молекулами O2) на больших высотах. С увеличением длины волны коэффициент поглощения молекулярным кислородом быстро падает. Молекулы же азота, которых в атмосфере больше всего, вообще пассивны и в поглощении этого излучения практически участия не принимают.

Вот и получается, что солнечное излучение с длиной волны от 200 – 300нм проникало бы сквозь атмосферу практически до поверхности Земли, если бы не озон. Его коэффициент поглощения k именно в этой области длин волн очень велик и намного превосходит соответствующие значения k для O2 и N2. В результате – излучение УФ-Б не проходит сквозь стратосферу, практически полностью поглощаясь молекулами O3. Не загружая изложение деталями спектральных характеристик озона, приведу лишь один пример. Максимальное значение k для озона приходится на l = 255нм и составляет около 130 см⁻1. Чтобы легче было представить масштаб этой величины, скажу, что, пройдя через слой озона толщиной в 3 мм при нормальном давлении, излучение, с этой длиной волны уменьшится в 10⁻17.

В целом же эффект волшебного щита именно таков – очень тонкий (всего 2-3 мм!) слой молекул O3 практически полностью поглощает идущее от солнца излучение в области УФ-Б. Начиная примерно с l = 320нм солнечное излучение уже доходит до поверхности, хотя точную границу по очевидным причинам назвать невозможно – переход происходит постепенно, а проникновение излучения зависит от многих факторов – таких, как высота Солнца над горизонтом, чистота или запыленность атмосферы, высота места над уровнем моря и т.д.

4. ОЗОН И КЛИМАТ.

В предыдущем пункте я рассмотрел способность озона поглощать ультрафиолетовое излучение с точки зрения роли озонового слоя как нашего защитника – “волшебного щита планеты”. Однако сам процесс такого поглощения не проходит бесследно для земной атмосферы. Энергия, которую несет излучение в указанном диапазоне длин волн, в результате поглощения передается атмосферному газу, вызывая его нагрев. Оценки показывают, что выше примерно 20 км и в стратосфере, и в большей части мезосферы этот процесс является основным источником нагрева, определяющим, таким образом температуру – её высотное и широтное распределение.

Распределение температуры контролирует динамические процессы в атмосферном газе. Таким образом, вся система циркуляции в стратосфере, включая и вертикальный перенос газа, зависит от распределения озона. И если под влиянием антропогенных процессов распределение озона заметно изменится, должна измениться вся картина динамических процессов, включая и взаимодействие стратосферы и тропосферы.

Расчеты с помощью атмосферных моделей показывают, что если повсеместно уменьшить концентрацию озона в два раза, то в мезосфере произойдет охлаждение атмосферного газа на 20° С. Это охлаждение в большей части стратосферы (18–40 км) составит 6 – 8° С, а на стыке тропосферы и стратосферы (7 – 18 км) – 2 – 3° С.

До этого времени я рассматривал лишь одно оптическое свойство молекул озона – поглощать мягкое ультрафиолетовое излучение. Однако молекулы O3 обладают и другими свойствами, существенными для теплового режима атмосферы. Наиболее важное из них – способность поглощать излучение в инфракрасном диапазоне, точнее в полосе с длиной волны примерно 9,6мкм.

В чем же суть так называемого парникового эффекта? Суть его состоит в том, что поверхность Земли поглощать энергию падающего на неё солнечного излучения (ближнего ультрафиолетового, видимого, инфракрасного – всего, которое до неё дошло, почти не поглотившись в воздухе) и переизлучает эту энергию в виде тепловых лучей сугубо в инфракрасной области. Если бы это инфракрасное излучение не поглощалось в атмосфере и не уходило назад в космическое пространство, на Земле было бы невыносимо холодно. Но этого не происходит потому, что большая часть переизлученной энергии не покидает нижних слоев атмосферы, а поглощается там облаками и различными малыми составляющими.

Наиболее активны в этом поглощении две атмосферные составляющие – углекислый газ и пары воды. Именно они обеспечивают задержку в атмосфере большей части инфракрасного излучения. Однако существует так называемое окно прозрачности в полосе 8 – 13 мкм, где суммарное поглощение указанными двумя составляющими (CO2 и H2O) мало. В этой области в роли основного поглотителя выступает озон. Как отмечалось выше, озон имеет сильную полосу поглощения в области 9,6мкм, которая и обеспечивает захват уходящего инфракрасного излучения в середине окна. Отмечу, что у молекулы озона имеются и другие полосы поглощения в инфракрасной области (например, с длиной волны 13,8 и 14,4 мкм). Но там они накладываются на сильные полосы поглощения H2O и CO2.

В последние два десятилетия человечество все больше беспокоит проблема усиления парникового эффекта из–за увеличения в атмосфере количества CO2. Факт монотонного роста концентрации двуокиси углерода в тропосфере в результате человеческой деятельности (уменьшение площади лесов, сжигании органического топлива, и другие промышленные процессы) установлен с высокой степенью достоверности. Этот рост за последние 20 лет составляет 0,3–0,4% в год.

Если тенденция роста CO2 в последующие десятилетия сохранится, то удвоение количества CO2 в атмосфере, которое существовало в до индустриальную эру, должно произойти примерно в середине XXI в. Правда, наиболее оптимистические модели предсказывают такое удвоение лишь к 2100 г. Конечно, реальная картина будет зависеть, прежде всего, от того, как быстро будет расти потребляемое человечеством количество энергии и насколько удастся заменить существующие сегодня источники энергии новыми, чистыми в экологическом отношении.

При удвоении количества двуокиси углерода в атмосфере ожидаемое увеличение средней температуры нижней атмосферы составляет 2–3°С в средних и низких широтах и 5–6°С в полярных областях. При удвоении количества углекислого газа в стратосфере, должно произойти понижение температуры (на 10–15° С), поскольку молекулы CO2 принимают активное участие в процессах охлаждения стратосферного воздуха. Такое изменение климата Земли может иметь очень серьезные последствия для многих регионов земного шара. Именно поэтому в настоящее время идет активное обсуждение возможностей уменьшения выбросов углекислого газа в атмосферу и замедление роста количества CO2.

Но не только рост концентрации CO2 может привести к усилению парникового эффекта. Свой вклад вносит и рост концентрации озона в тропосфере, вызванный антропогенным загрязнением атмосферы.

Конечно, картина с озоном далеко не проста, как в случае CO2. Ведь молекулы O3 играют роль и в процессах нагрева атмосферного газа (за счет поглощения ультрафиолетового излучения Солнца в стратосфере и инфракрасного излучения поверхности в основном в тропосфере) и в процессах его охлаждения (за счет излучения молекулами O3 части поглощенной энергии). Значит можно ожидать уменьшение количества озона в стратосфере из антропогенных источников и увеличение его в тропосфере.

Все эти сложности приводят к тому, что оценить суммарный эффект ожидаемого изменения количества озона не так просто. Тем не менее, наиболее надежные являются расчеты по математическим моделям, учитывающим как радиационные, так и конвективные эффекты, показывают, что при ожидаемом удвоении количества озона в тропосфере и уменьшении в двое в стратосфере климатический эффект должен быть в большей мере подобен эффекту от ожидаемого удвоения количества двуокиси углерода, но с меньшей амплитудой. Иначе говоря, если в случае удвоения CO2 вероятно увеличение температуры в среднем по Земле на 3–4°С, то в случае описанного изменения количества озона это увеличение составит около 1° С. Уменьшение вдвое количества стратосферного озона также должно вызвать эффект, подобный эффекту удвоения количества CO2,– охлаждение стратосферы на 15–20°С.

Следует отметить, что антропогенное увеличение количества озона в тропосфере, прежде всего, с точки зрения дополнительного вклада в парниковый эффект, неизбежно будет сопровождаться и другими отрицательными эффектами. Озон обладает токсическими свойствами, которые могут приводить к поражению легочных тканей человека (и животных), ставя, таким образом, под угрозу здоровье людей. Ожидается влияние обогащенного озоном воздуха на растения, а также на различные (особенно легкоокисляющиеся) материалы.

 

 

 

5. ЯДЕРНЫЕ ВЗРЫВЫ  И ОЗОН.

Существует еще один антропогенный источник азотных окислов, который может влиять на жизнь стратосферного озона. Речь идет о ядерных взрывах.

За счет сильного нагрева газа (в тепловую энергию переходит около трети всей энергии взрыва) и частично за счет мощного излучения состав воздуха в области взрыва сильно изменяется,– в нем появляется много азотных окислов. Сама вспышка излучения длится не очень долго, да и падение температуры после внезапного нагрева происходит достаточно резко. Однако быстро вернуться назад к исходному состоянию газа с измененным составом уже не может – время жизни относительно динамических и химических процессов составляет часы. В результате облако с высокой “добавкой” азотных окислов будет, постепенно расширяясь существовать большое время.

По разным оценкам, при взрыве образуется от 1 до 10 килотонн NO на 1 мегатонну мощности. На первой стадии в облаке присутствует в основном двуокись азота NO2. Именно ей облако обязано своим желтоватым цветом. При остывании облака происходит перераспределение азотных радикалов, и в облаке появляются другие окислы, прежде всего NO. На стадии, когда горизонтальный диаметр облака составляет несколько километров, концентрация молекул NO в нем равна примерно10 в 12 степени см в –3 степени. Эта величина близка к концентрации самого озона в максимуме его слоя. Зная степень воздействия азотных окислов на озон можно заключить, что атомные взрывы должны разрушать стратосферный озон. А что на самом деле?

При обсуждении влияния высотных взрывов на озон нужно различать кратковременные и долговременные эффекты. Вряд ли можно ожидать, что в облаке, насыщенном окислами азота сохранится неизменным. Однако по теоретическим моделям дают уменьшение концентрации озона в области максимума слоя в 3-30 раз в зависимости от параметров взрыва. Измерить, однако, такие эффекты достаточно трудно, кроме того, в последние полтора десятилетия высотные взрывы не проводятся (основная серия была в 60-х годах), и поэтому нет возможности проверить теоретические оценки изменения концентрации озона с помощью наблюдений современными методами.

Серии высотных ядерных испытаний 60-х годов привели в сумме к образованию в стратосфере дополнительно большого количества азота, сравнимо с их естественным источником. Так, в 1961г. ядерный источник NO дал примерно 600 килотонн, а в 1962 г. – 1100 килотонн, что лишь немного меньше естественного поступления NO – 1600 килотонн в год. Казалось бы такая “добавка” к обычному фону азотных соединений не могла сказаться на количестве озона в эти годы в глобальном масштабе. Однако все попытки найти по мировой сети озонометрических станций тех времен следы какого-либо систематического уменьшения концентрации озона в этот период не дали определенного результата. Более того, по некоторым данным количество озона в последующие годы даже возросло. Не удалось обнаружить глобальных эффектов в концентрации озона и после высотных ядерных взрывов весной 1970г., хотя тогда уже велись наблюдения концентрации озона со спутника “Нимбус-4”.

Все эти данные поставили под сомнение даже сам факт отрицательного влияния высотных взрывов на количество озона и позволили некоторым ученым высказать предположение, что в результате всего комплекса процессов, проходящих в облаке, количество озона может не уменьшаться, а возрастать.

Более реальным с позиции сегодняшних знаний о физике стратосферного озона, представляется уменьшение концентрации озона в результате взрыва.

 

6. МЕХАНИЗМ ОБРАЗОВАНИЯ ОЗОНОВОЙ ДЫРЫ.

Как только существование “озоновой дыры” стало научным фактом, естественно возник вопрос: А какова же её природа? И через некоторое время появились две гипотезы – антропогенная фотохимическая и метеорологическая. Сторонники первой гипотезы считали, что уменьшение озонового слоя результат антропогенного загрязнения атмосферы. Озоновая дыра имеет чисто метеорологическое происхождение и связана со спецификой динамического режима стратосферы в Антарктике, – утверждали приверженцы второй гипотезы. Важным моментом этой гипотезы было существование внутри устойчивого циклона (так называемого циркумполярного вихря), висящего зимой и большую часть весны над Антарктикой, направленных вверх (восходящих) вертикальных движений.

Информация о работе Роль озона в атмосфере