Электроснабжение сахарного завода

Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 14:28, дипломная работа

Описание работы

Электроэнергетика является базовой отраслью российской экономики, обеспечивающей потребности народного хозяйства и населения в электроэнергии и теплоэнергии и экспорт электроэнергии в страны СНГ и дальнего зарубежья. От устойчивой и надежной работы отрасли во многом зависит энергетическая безопасность страны. В условиях роста производства промышленности электроэнергетика становится одним из жизнеобеспечивающих секторов экономики и одним из факторов экономического развития, а её надежное функционирование – важнейшим условием перехода России к высокому стандарту и уровню жизни. Перспективы развития электроэнергетики определены Электроэнергетической стратегией России на период до 2020 г., которая была утверждена Правительством РФ 28 августа 2003 г.

Содержание работы

Введение …………………………………………………………………………… 6
1 Технологический процесс……………………………………………………….10
2 Показатели качества электроэнергии…………………………………………..15
3 Выбор напряжения электрической сети………………………………………..23
4 Определение расчетных электрических нагрузок……………………………..26
4.1 Расчетная нагрузка ремонтно-механического цеха №7……………………..26
4.2 Расчетные нагрузки для остальных цехов завода…………………………....28
4.3 Определение расчетной нагрузки электрического освещения……………...30
4.4 Расчетная нагрузка всего завода………………………………………………31
5 Определение количества и мощности трансформаторов……………………...34
5.1 Предварительный выбор количества цеховых трансформаторов на предприятии………………………………………………………………………..34
5.2 Определение мощности КУ напряжением до 1 кВ и выше…………………34
5.3 Выбор варианта количества цеховых трансформаторов……………………35
5.4 Выбор местоположения и мощности трансформаторов ГПП………………36
5.5 Определение количества трансформаторов в каждом цехе………………...36
5.6 Выбор мощности батарей конденсаторов……………………………………38
6 Выбор схемы внутреннего электроснабжения и ее параметров……………...39
6.1 Выбор схемы межцеховой сети……………………………………………….39
6.2 Выбор сечений жил кабелей распределительной сети………………………40
6.3 Технико- экономические показатели и сравнение двух вариантов схем…..46
7 Расчет токов короткого замыкания……………………………………………..51
7.1 Составление схемы замещения и расчет ее параметров…………………….51
7.2 Определение токов короткого замыкания……………………………………53
7.3 Выбор оборудования…………………………………………………………..54

8 Релейная защита и автоматика………………………………………………….58
8.1 Назначение релейной защиты и автоматики………………………………....58
8.2 Основные требования, предъявляемые к релейной защите и автоматике…59
8.3 Защита кабельных линий и цеховых трансформаторов……………………..62
9 Безопасность жизнедеятельности……………………………………………….68
9.1 Повышенное значение тока и напряжения в электрической цепи………….68
9.2 Повышенный уровень электромагнитных излучений……………………….70
9.3 Повышенный уровень шума на рабочем месте………………………………71
9.4 Защита от повышенного уровня электромагнитных полей…………………73
9.5 Борьба с повышенным уровнем шума………………………………………. 74
9.6 Противопожарные меры при эксплуатации электроустановок……………..74
9.7 Требования к персоналу……………………………………………………….75
9.8 Производственная санитария………………………………………………….76
10 Расчет заземления и молниезащиты механического цеха……………………79
11 Расчет электроосвещения механического цеха……………………………….83
11.1 Выбор системы освещения и освещенности цеха………………………….83
11.2 Выбор типа и мощности источника света…………………………………..83
12 Экономическая часть…………………………………………………………...91
13 Монтаж токопроводов напряжением 6-35 кВ………………………………...99
Заключение………………………………………………………………………..110
Список использованной литературы…………………………………………….111

Файлы: 1 файл

Готовый диплом.doc

— 2.97 Мб (Скачать файл)

 

2 ПОКАЗАТЕЛИ КАЧЕСТВА  ЭЛЕКТРОЭНЕРГИИ.

 

Обеспечение качества электроэнергии на зажимах приемников электроэнергии — одна из наиболее сложных задач, решаемых в процессе проектирования и эксплуатации систем электроснабжения. Появление в системах электроснабжения мощных электродвигателей, вентильных преобразователей и других приемников с резкопеременной нагрузкой создало проблему их электромагнитной совместимости с системой электроснабжения, успешное решение которой обеспечивает рациональную работу, как этих приемников, так и приемников со спокойной нагрузкой, присоединенных к той же системе (освещение, электродвигатели длительного режима работы и др.).

Показатели качества электроэнергии регламентируются требованиями ГОСТ 13109—97.

К показателям качества электроэнергии для трехфазных сетей  переменного тока относятся следующие:

отклонение напряжения;

колебание напряжения;

коэффициенты несимметрии и неуравновешенности напряжений;

коэффициент несинусоидальности напряжения;

отклонение частоты;

колебания частоты.

Отклонение напряжения V — это разность действительного значения напряжения U и его номинального значения Uн для сети, возникающая при сравнительно медленном изменении режима работы, когда скорость изменения напряжения меньше 1% в секунду:

V=U-Uн                                                                                                        (2.1) При понижении напряжения возрастает скольжение и уменьшается частота вращения асинхронных двигателей, являющихся основными приемниками электроэнергии. При этом возрастает сила потребляемого тока, двигатели перегреваются и быстрее изнашивается изоляция. Вращающий момент асинхронного двигателя пропорционален квадрату напряжения, поэтому при его понижении затрудняются пуск и самозапуск двигателей под нагрузкой. В связи с этим установлены пределы отклонения напряжения на зажимах электродвигателей, станций управления от минус 5 до +10%.

Весьма чувствительны к изменению  напряжения косинусные конденсаторы. Их реактивная мощность пропорциональна квадрату подводимого напряжения. Таким образом, при понижении напряжения на 10% мощность конденсатора снизится до 81%. Повышение напряжения на 10% увеличивает реактивную мощность конденсатора до 121% и приводит к его перегрузке, поэтому для конденсаторов допускается увеличение напряжения не более чем на 10%.

Значительное влияние отклонение напряжения оказывает на работу электросварочных установок, ухудшая качество сварки. Для рационального ведения этого процесса отклонение напряжения на сварочных установках должно составлять +5%.

Высокие требования к качеству напряжения предъявляют осветительные установки. При отклонениях напряжения изменяются сила света ламп накаливания и срок их службы. Сила света изменяется при этом пропорционально изменению напряжения в третьей — четвертой степени. Повышение напряжения на 10% сокращает срок службы ламп накаливания примерно в 3 раза.

ГОСТ 13109—97 допускает отклонения напряжения на зажимах электроосветительных приборов от минус 2,5 до +5%.

Под колебанием напряжения V, подразумевается изменение напряжения в сети со скоростью более 1 %/с:

Vt=Uнб -Uнм ,                                                                                                                            (2.2)

где: Uнб и Uнм — соответственно наибольшее и наименьшее действующие напряжения в кратковременном процессе его изменения, %.

Колебания напряжения ограничиваются частотой их возникновения. Для зрительного восприятия наиболее опасными считаются колебания с частотами в пределах 1...10 Гц. Их значение при этом ограничивается величиной порядка 1%. Если число колебаний в час не превышает 10, то это значение возрастает до 1,5%, при числе колебаний не более 1 раза в час — до 4%.

Допустимые значения колебаний напряжения в сетях, от которых питаются электроосветительные установки и радиоприборы, определяют по формуле

,                                                                                  (2.3)

где: т — частота колебаний в час, 1/ч; t— средний интервал между последовательными колебаниями, мин.

Для обеспечения нормируемого ГОСТ 13109—97 режима напряжения применяются различные способы и средства регулирования напряжения.

Способы регулирования:

регулирование напряжения на шинах центра питания;

изменение сопротивления  элементов сети;

изменение силы реактивного  тока, протекающего в сети;

изменение коэффициента трансформации трансформаторов и автотрансформаторов (линейных регуляторов).

Средства регулирования:

трансформаторы с регулированием напряжения под нагрузкой (РПН):

линейные регуляторы;

управляемые батареи  конденсаторов;

синхронные двигатели  с автоматическими регуляторами возбуждения.

Кроме того, можно использовать трансформаторы с переключением без возбуждения (ПБВ), неуправляемые батареи конденсаторов, синхронные двигатели без автоматического регулирования возбуждения.

Несимметрия напряжений и токов трехфазной системы — один из важнейших показателей качества электрической энергии. Причина появления несимметрии, напряжений и токов — различные несимметричные режимы системы электроснабжения. Широкое применение однофазных установок значительной мощности различного рода привело к значительному увеличению доли несимметричных нагрузок. Подключение таких мощных несимметричных однофазных нагрузок к трехфазным сетям вызывает в системах электроснабжения длительный несимметричный режим, характеризующийся несимметрией напряжений и токов.

В системах электроснабжения различают кратковременные (аварийные) и длительные (эксплуатационные) несимметричные режимы. Кратковременные несимметричные режимы обычно связаны с аварийными различными процессами, например несимметричными короткими замыканиями, обрывами одного или двух проводов воздушной линии с замыканием на землю и т. п. Длительные несимметричные режимы обычно обусловлены несимметрией элементов электрической сети или подключением к системе электроснабжения несимметричных нагрузок.

Несимметрия напряжений и токов, обусловленная несимметрией элементов электрической сети, называется продольной. Примером продольной несимметрии могут служить неполнофазные режимы воздушных линий. Несимметрия характерна также для специальных систем электропередачи: два провода — земля (ДПЗ); два провода — рельсы (ДПР), два провода — труба (ДПТ) и т. д.

Несимметрия напряжений и токов, вызванная  подключением к сети много- и однофазных несимметричных нагрузок, называется поперечной.

Несимметрия характеризуется коэффициентом несимметрии напряжения

Кп — отношение напряжения обратной последовательности основной частоты U2 к номинальному линейному напряжению U1.

,                                                                                               (2.4)

И коэффициентом неуравновешенности напряжения — отношением напряжений нулевой последовательности основной частоты Uo к номинальному фазному напряжению UН:

.                                                                                              (2.5)

Коэффициент несимметрии напряжений служит нормированным показателем качества электрической энергии. В соответствии с ГОСТ 13109—97 Кн 2% длительно допустим на зажимах любого трехфазного симметричного приемника электрической энергии. В случаях, когда коэффициент несимметрии оказывается больше, должны быть приняты меры к его снижению.

Несимметрия напряжений в системах электроснабжения оказывает значительное влияние на работу отдельных элементов сети и приемников электрической энергии. При несимметрии напряжений, обусловленных несимметричной нагрузкой, в статорах синхронных машин проходят токи прямой, обратной и нулевой последовательности, что вызывает нагрев ротора и увеличение вибрации, в некоторых случаях опасной для конструкции машин.

Особенно неблагоприятно несимметрия напряжений сказывается на работе и сроке службы асинхронных машин. При несимметрии напряжений конденсаторные установки неравномерно загружаются реактивной мощностью по фазам, мощность многофазных выпрямителей снижается.

При несимметричном режиме токи нулевой последовательности постоянно проходят через заземлители и отрицательно сказываются на их работе, вызывая высушивание грунта и увеличение сопротивления растеканию. Они оказывают значительное влияние на низкочастотные каналы проводной связи, сигнализации и автоблокировки.

Несинусоидальность формы  кривой напряжения и тока. Широкое внедрение приемников электрической энергии с нелинейными вольтамперными характеристиками, определяемое потребностями увеличения экономической эффективности производства, привело к отрицательному влиянию этих приемников на электрические параметры режима сети.

К элементам систем электроснабжения (СЭС) с нелинейными вольтамперными характеристиками относятся вентильные преобразователи (ртутные и полупроводниковые), установки электросварки, газоразрядные источники света, а также трансформаторы и электродвигатели. Характерная особенность этих устройств — потребление ими из сети несинусоидальных токов при подведении к их зажимам несинусоидального напряжения.

Высшие гармонические токи и напряжения обусловливают дополнительные потери электроэнергии, приводят к нагреву электрооборудования и увеличивают интенсивность старения его изоляции и изоляции кабелей. Особенно неблагоприятное влияние эти гармоники оказывают на работу конденсаторных батарей, вызывая дополнительные потери и даже выход их из строя.

Токи высших гармоник, проходя по элементам сети, вызывают падения напряжения в сопротивлениях этих элементов, которые, накладываясь на основную синусоиду напряжения, приводят к искажению формы кривой напряжения.

Степень несинусоидальности напряжения сети принято характеризовать коэффициентом несинусоидальности напряжения Кнс, который представляет собой отношение действующего значения гармонической составляющей несинусоидального напряжения к напряжению основной частоты, %:

,                                                                  (2.6)

где Uv, U1 — действующие значения соответственно v-й и 1-й гармоник напряжения.

ГОСТ 13109—97 нормирует  форму кривой напряжения у приемников электроэнергии, допуская отклонение действующего напряжения всех высших гармоник от действующего напряжения основной частоты не более 5%.

Для снижения уровня влияния высших гармоник на напряжение устанавливают силовые фильтры, уменьшают число фаз выпрямления.

Отклонение частоты  - разность действительного f и номинального fн значений основной частоты

в Гц

,                                                                                                       (2.7)

или в %

.                                                                                              (2.8)

В нормальном режиме работы энергетической системы допускаются отклонения частоты, усредненные за 10 мин, ±0,1 Гц. Допускается временная работа энергетической системы с отклонением частоты, усредненным за 10 мин, ±0,2 Гц.

Колебания частоты — это изменения  частоты, происходящие со скоростью  0,2 Гц/с. Колебания частоты — разность наибольшего fнб и наименьшего fнм значений основной частоты за определенный промежуток времени:

в Гц

,                                                                                                   (2.9)

или в %

.                                                                                         (2.10)

В установившемся режиме частота во всей энергетической системе (связанной сетями переменного тока) одинакова и определяется частотой вращения генераторов. Однако частота вращения генераторов определяется частотой вращения первичных двигателей — турбин, которые имеют специальный регулятор частоты вращения (первичное регулирование), обладающий сравнительно большой инерцией (до 5%). Это значит, что частота вращения турбин зависит от механической нагрузки на ее валу и определяется расходом энергоносителя (пар, вода). Электрическая нагрузка турбин непрерывно изменяется, поэтому должна изменяться и частота вращения генераторов (турбогенераторов); при росте нагрузки частота вращения (и частота сети) снижается, а при уменьшении возрастает.

В настоящее время  поддержание допустимого размаха колебаний частоты в энергетических системах во время аварийного отключения источников питания обеспечивается устройствами аварийной автоматической разгрузки по частоте (ААРЧ), которые отключают часть менее ответственных потребителей.

Информация о работе Электроснабжение сахарного завода