Виды земляных сооружений

Автор работы: Пользователь скрыл имя, 16 Января 2014 в 12:08, реферат

Описание работы

Строительство любых зданий и сооружений вызывает необходимость переработки грунтов, включающей в свой состав их разработку, перемещение, укладку и уплотнение. Весь комплекс этих процессов называют земляными работами.
Удельный вес земляных работ в общем объеме строительно-монтажных работ очень велик и составляет около 15% по стоимости и до 20% по трудоемкости. На земляные работы приходится около 10% всех рабочих, занятых в строительстве. Объемы земляных работ постоянно растут и составляют свыше 15 млрд.м в год. Переработка такого количества грунта возможна лишь при условии комплексной механизации и эффективной технологии производства работ.

Содержание работы

1. Общие положения
2. Виды земляных сооружений
3. Классификация грунтов
4. Подготовительные и вспомогательные работы при возведении земляных сооружений
5. Определение объемов земляных работ
6. Основные способы разработки грунтов
7. Искусственное закрепление грунта
8. Водоотлив и водопонижение
9. Транспортировка и уплотнение грунта
10. Выполнение земляных работ в зимнее время
11. Техника безопасности

Файлы: 1 файл

Виды земляных сооружений.docx

— 728.74 Кб (Скачать файл)

Метод щелевых  зарядов. Применяют при рыхлении мерзлых грунтов. Для этого с помощью диско-фрезной или буровой машины на расстоянии 0,5...2,5 м друг от друга нарезают парные щели на глубину промерзания грунта. В одну из щелей закладывают заряд ВВ, другую оставляют пустой в качестве компенсирующей. От взрыва грунт, расположенный между зарядной и компенсирующей щелями, дробится и одновременно смещается в сторону компенсирующей щели. На больших площадях щелей нарезают несколько, а заряды закладывают через одну щель. Взрывные работы, и особенно массовые взрывы, выполняют по специальным проектам, определяющим способы взрывания, размещение зарядов, порядок закладки взрывных камер или скважин и очередность взрывов.

 

7. Искусственное  закрепление грунта

Строительство на слабых грунтах  требует их закрепления, которое  может быть временным или постоянным. К временному закреплению грунтов  относят замораживание, а к постоянному  — цементацию, битумизацию, полимеризацию, силикатизацию, электрический, электрохимический  и некоторые другие способы. Постоянное закрепление грунтов широко используют при реконструкции зданий и сооружений и реставрации памятников архитектуры.

Выбор способа зависит  от физико-механических свойств грунта, его состояния и назначения, требуемой степени закрепления.

Замораживание грунта. Применяют при устройствах глубоких выемок в сильно водонасыщенных грунтах (плывунах) для закрепления стенок путем создания льдогрунтовой оболочки. Для этого по периметру котлована погружают в грунт замораживающие колонки из стальных труб. Колонки соединяют трубопроводом, по которому при помощи насоса непрерывно циркулирует охлажденный в холодильной установке до 20...25°С солевой раствор, имеющий очень низкую температуру замерзания. Чаще всего для этой пели используют концентрированные растворы хлористых солей (хлористого кальция — СаС2 и хлористого натрия — NaCl). В результате длительного охлаждения грунт вокруг колонок замерзает, образуя сплошную стену. Под прикрытием мерзлого грунта ведут необходимые работы (рис. 13). Цементация и битумизация. Основаны на инъектировании соответственно цементного раствора или разогретого битума в пористые грунты с высоким коэффициентом фильтрации. Инъекционные трубы погружают в грунт забивкой или в предварительно пробуренные отверстия. Радиус закрепления грунта вокруг инъекционной трубы зависит от его фильтрационной способности и колеблется в пределах 0,3...1,5 ч.

Полимеризация и  силикатизация. Относятся к химическому способу закрепления грунтов.

При полимеризации в грунт  через инъекторы нагнетают композицию, состоящую из полимерной смолы и отвердителя. Количеством введенного отвердителя регулируют продолжительность отверждения смолы, которая может быть от нескольких минут до нескольких суток. Полимеризация позволяет получать прочность грунта до 25 МПа. Однако высокая стоимость полимерных смол сдерживает широкое внедрение этого метода.

  

 

 

  

 

 

  

 

 

  

 

 

 

Рис. 13. Схема закрепления  грунтов методом замораживания.

1- замораживающая  колонка.

2 –наружная труба.

3 - питающая труба.

4-патрубок, подсоединённый к холодильной установке.

5-замороженный  грунт.

6-водонепроницаемый  грунт.

При силикатизации используют водные -растворы силиката натрия (Na2SiO-}) и хлористого кальция (CaClz). Нагнетают растворы после их предварительного перемешивания в определенном соотношении, либо поочередно, вначале раствор силиката натрия, затем — хлористого кальция.

Растворы вступают в реакцию, что приводит к образованию геля кремниевой кислоты, который обволакивает частицы грунта и, твердея, связывает  их в монолит.

Прочность закрепленного  силикатизацией грунта зависит от его  дренирующих свойств и способа  введения растворов (совместного или  поочередного) и составляет 0,3...3 МПа.

Электрический способ. Применяют для закрепления влажных глинистых грунтов. Он основан на использовании явления электроосмоса — способности перемещения (миграции) влаги от положительного электрода (анода) к отрицательному (катоду). Для этого через грунт пропускают постоянный ток с напряженностью поля 0,5... I В/см и плотностью 1...5 А/м2. Под действием тока влага мигрирует, влажность грунта уменьшается, грунт самоуплотняется, приобретая большую устойчивость.

Электрохимический способ. Отличается от предыдущего тем, что одновременно с пропуском электрического тока в грунт вводят через инъекционные трубки, являющиеся одновременно катодом, раствор химических добавок (силиката натрия, хлористого кальция, хлорного железа). Благодаря этому интенсивность процесса закрепления грунта возрастает.

8. Водоотлив и  водопонижение

Устройство котлованов и  траншей в водонасыщенных грунтах ведут с удалением из них поверхностных и грунтовых вод. Для этого используют открытый водоотлив или искусственное водопонижение.

Открытый водоотлив. Применяют  в грунтах с коэффициентом  фильтрации до I м/сут. Он предусматривает откачку насосами воды, поступающей в траншею или котлован. Для сбора воды дно выемки делают с небольшим уклоном, а в самой пониженной части устраивают приямок-зумпф (рис. 14). При разработке траншей зумпф располагают в специальном отсеке траншеи, называемом «усом».

 

 

 

  

 

 

 

Рис. 14. Схема открытого  водоотлива из котлована: 1—зумпф; 2—центробежный  насос

Основным недостатком  этого метода является постоянное присутствие  в выемке воды, которая усложняет  производство работ и снижает  устойчивость стенок выемки из-за разжижения грунта.

Искусственное понижение  уровня грунтовых вод. Применяют в грунтах с высоким (более 2 м/сут) коэффициентом фильтрации. Сущность метода состоит в непрерывной откачке воды из специальных скважин, располагаемых рядом с выемкой. Для откачки воды используют легкие иглофльтровые установки, эжекторные иглофильтры, глубинные насосы, погружаемые в трубчатые колодцы.

Иглофильтровые установки (рис. 15,а,б) включают в себя комплект иглофильтров, водосборный коллектор и центробежный насос. Иглофильтр представляет собой трубу, к нижней части которой присоединено фильтровое звено, состоящее из наружной перфорированнойи внутренней глухой труб. Внизу иглофильтра имеются кольцевой и шаровой клапаны, обеспечивающие погружение в грунт гидравлическим способом без дополнительных устройств путем нагнетания воды по внутренней трубе. Вода, выходя из наконечника, размывает грунт вокруг фильтра и он погружается под собственным весом. На поверхности земли иглофильтры с помощью водосборного коллектора подключают к центробежному насосу.

Рис. 15. Схема искусственного водопонижения: а—иглофильтровой установкой; б—эжекторной установкой; в—схема работы клапанов иглофильтрового звена; г—схема действия эжекторного иглофильтра; 1—центробежный насос; 2—коллектор; 3—иглофильтры; 4—фильтрационная сетка; 5—наружная труба; 6—внутренняя труба; 7—кольцевой клапан; 8—шаровой клапан; 9—ограничитель; 10—низконапорный насос; 11—эжекторная насадка; 12—фильтровое звено.

Располагают иглофильтры  по периметру котлована или вдоль  траншеи. Если требуется понизить уровень  грунтовых вод более чем на 5 м, иглофильтры располагают ярусами.

Эжекторные иглофильтровые установки (рис. 15,в,г) применяют для понижения уровня грунтовых вод на глубину до 20 м в грунте с коэффициентом фильтрации более 3 м/сут, располагая их одним ярусом.

Эжекторный иглофильтр состоит из надфильтрового н фильтрового звеньев. Фильтровое звено устроено по принципу легкого иглофильтра, но без клапанов в нижней его части. Надфильтровое звено состоит из наружной и внутренней трубы с эжекторной насадкой.

При работе установки в  кольцевое пространство между наружной и внутренней трубами подают под  давлением 750...800 кПа рабочую воду, которая через отверстия в  эжекторе устремляется вверх по внутренней трубе. В результате резкого изменения скорости движения рабочей воды в насадке создается разрежение, обеспечивающее подсос грунтовой воды из внутренней трубы фильтрового звена. Грунтовая вода, смешиваясь с рабочей, поступает в циркуляционный бак, откуда ее при избытке откачивают насосом или удаляют самотеком.

Эжекторные иглофльтры погружают в грунт раздельно. Вначале гидравлическим способом погружают колонну наружных труб с иглофильтром на требуемую глубину, а затем в нее опускают колонну внутренних труб с эжекторной насадкой.

Глубинные насосы в трубчатых колодцах применяют для понижения уровня грунтовых вод на глубину более 20 ч Колодец представляет собой погруженную в грунт трубу диаметром 200...400 мм, оборудованную фильтрами. В колодец ниже уровня грунтовых вод опускают глубинный насос, с помощью которого откачивают воду. Устраивают колодцы по периметру будущей выемки.

9. Транспортировка  и уплотнение грунта 

 

Разработанный экскаваторами  грунт перемещают в насыпи или  резервы при помощи самосвалов, тракторов  с прицепами, железнодорожных составов, ленточных конвейеров, а иногда гидравлического  транспорта по трубопроводам Земляные сооружения должны быть устойчивыми, надежными  и прочными на всем протяжении эксплуатации. Это обеспечивают равномерным послойным  распределением и уплотнением грунта. Чаще толщину слоя принимают 150... 800 мм в зависимости от вида грунта, степени его уплотнения и массы  уплотняющих машин.

Степень уплотнения грунта определяют проектом, и она должна быть не ниже нормативной. Требуемую  плотность с минимальными трудозатратами достигают при использовании  грунта определенной влажности, называемой оптимальной. Ее определяют с учетом вида грунта и уплотняющих машин.

Оптимальную влажность грунтов  в необходимых случаях получают увлажнением сухих или подсушиванием  излишне влажных грунтов. Уплотнение грунтов неоптимальной влажности  требует снижения толщины уплотняющего слоя и увеличения уплотняющего воздействия. Для уплотнения грунта используют катки прицепные и полуприцепные на пневматических шинах, кулачковые, решетчатые, вибрационные, виброударные, самоходные на пневмошинах и с гладкими вальцами массой 3...40 т, трамбующие плиты — 3..-15 т и виброуплотняющие плиты — 0,12...0,75 т Трамбующими плитами 5...10 т уплотняют также просадочные грунты оснований фундаментов зданий и сооружений.

Кулачковые катки используют только при уплотнении связных грунтов; с гладкими вальцами и вибрационные—  несвязных и мало связных грунтов.

Требуемую плотность грунта достигают за 4... 12 проходов катка  по одному следу, в зависимости от вида грунта и массы катка. Связные  грунты требуют большего уплотнения, чем песчаные. Верхний слой грунта, уплотняемый трамбующими плитами, разуплотняется. Поэтому в основаниях зданий и сооружений его доуплотняют легкими ударами трамбовок или другими более легкими уплотняющими машинами.

Грунт обратной засыпки траншей  и котлованов уплотняют электрическими, пневматическими виброуплотняющими  плитами или малогабаритными  самоходными катками.

Уплотнение грунта начинают сразу после его укладки и  разравнивания и ведут с обязательным перекрытием на 20...30 см предыдущего  следа уплотнения. Укладку грунта при дожде не ведут.

10. Выполнение  земляных работ в зимнее время

земляной работа грунт  строительство

По мере замерзания механическая прочность грунта резко возрастает, что приводит к увеличению затрат машинного времени и труда  на его разработку, а следовательно  и к удорожанию стоимости работ. В связи с этим при необходимости  проведения земляных работ в зимнее время принимают меры по предохранению  грунта от промерзания, а разрабатывают  его только после оттаивания или  рыхления.

Предохранение грунта от промерзания. Обеспечивают, создавая на его поверхности термоизоляционный слой; разрыхляя верхний грунтовый слой; укрывая грунт различными теплоизоляционными материалами.

Рыхлят грунт до его  замерзания вспахиванием и боронованием, предварительно обеспечив отвод  поверхностных вод. Обработанный таким  образом верхний слой грунта приобретает  рыхлую структуру с замкнутыми пустотами, заполненными воздухом, и обладает достаточными термоизоляционными свойствами. Вспашку ведут тракторными плугами  на глубину 200...350 мм с последующим  боронованием на глубину 150...200 мм. Искусственное  увеличение снежного покрова сгребанием снега бульдозерами, автогрейдерами или путем снегозадержания с  помощью щитов позволяет повысить термоизоляционный эффект. Механическое рыхление грунта чаще всего используют для утепления значительных по площади  участков.

Защита поверхности грунта термоизоляционными материалами эффективна на небольших по площади участках и при наличии местных дешевых  материалов, древесной листвы, опилок и стружки, моха, торфа, соломы, шлака. Термоизоляционные материалы укладывают слоем 200... 400 мм непосредственно по грунту

Рис. 16. Схема оттаивания мерзлого грунта: а—огневым способом; б—электропрогревом с использованием горизонтальных электродов; в—то же, с использованиев вертикальных электродов; г—паронагревом; 1—секция короба; 2—утеплитель; 3—вытяжная труба; 4—оттаявший грунт; 5—трехфазная электрическая сеть; 6—горизонтальные полосовые электроды; 7—слой опилок; 8—слой толя или рубероида; 9—стержневой электрод; 10—порапровод; 11—паровая игла; 12—пробуренная скважина; 13—колпак.

Информация о работе Виды земляных сооружений