Порошковые и композиционные материалы

Автор работы: Пользователь скрыл имя, 19 Марта 2014 в 13:56, реферат

Описание работы

Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, берилов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемым и значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.

Содержание работы

I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
3
Композиционные материалы
4
Карбоволокниты
4
Бороволокниты
4
Органоволокниты
4
Металлы, армированные волокнами
5
II. ПОРОШКОВЫЕ СПЛАВЫ
5
III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ
6
Производство порошков
6
Испытание порошков
7
Прессование
8
Спекание
9
IV. ПРОЧИЕ ПОРОШКОВЫЕ СПЛАВЫ
11
Антифрикционные сплавы
11
Фрикционные материалы
12
13
Пористые фильтры
Керметы


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Файлы: 1 файл

Конрт. по экономике.docx

— 53.64 Кб (Скачать файл)

 

Министерство образования Хабаровского  края

Краевое государственное образовательное учреждение

среднего профессионального образования

«Хабаровский педагогический колледж»

 

 

РЕФЕРАТ

По дисциплине: «Материаловедение»

 

На тему:

«Порошковые и композиционные материалы»

 

 

Выполнил:

Удинкан Сергей

Специальность:050501

Профессиональное образование

Курс 2, группа 121

Проверил ________________

 

 

 

 

 

Хабаровск 2012

СОДЕРЖАНИЕ

I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

3

  1. Композиционные материалы

4

  1. Карбоволокниты

4

  1. Бороволокниты

4

  1. Органоволокниты

4

  1. Металлы, армированные волокнами

5

II. ПОРОШКОВЫЕ СПЛАВЫ

5

III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ

6

  1. Производство порошков

6

  1. Испытание порошков

7

  1. Прессование

8

  1. Спекание

9

IV. ПРОЧИЕ ПОРОШКОВЫЕ СПЛАВЫ

11

  1. Антифрикционные сплавы

11

  1. Фрикционные материалы

12

13

  1. Пористые фильтры
  1. Керметы

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

15

 

 

 

17

 



 

 

 

 

 

 

 

I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, берилов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемым и значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.

Содержание упрочнителя в композиционных материалах составляет 20-80 % по объему. Свойства матрицы определяют прочность композиционного материала при сжатии и сдвиге. Свойства упрочнителя определяют прочность.

Композиционные материалы имеют высокую прочность, жесткость, жаропрочность и термическую стабильность. Так, для карбоволокнитов d=650-1700 МПа, а для бороволокнитов d=900-1750 МПа. Плотность композиционных материалов 1,35- 1,8 г/см^3 Композиционные материалы являются весьма перспективными конструкционными материалами для многих отраслей машиностроения.

 

 

 

Карбоволокниты (углепласты) - это композиции из полимерной матрицы и упрочнителей в виде углеродных волокон. Для полимерной матрицы используются полиимиды, эпоксидные и фенол формальдегидные смолы. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидов можно применять при температуре до 300°С Они водо- и химостойки. Карбоволокниты содержат, наряду с угольными, стеклянные волокна, что удешевляет материал. Карбоволокниты используют в химической, судостроительной и авиационной промышленности.

При обработке обычных полимерных карбоволокнитов в инертной или восстановительной атмосфере получают графитированные карбоволокниты или Карбоволокниты на углеродной матрице. Так, карбоволокнит на углеродной матрице типа КУП-ВМ по прочности и ударной вязкости в 5—10 раз превосходит специальные графиты: При нагреве в инертной атмосфере он сохраняет прочность до 2200*C. Карбоволокниты с углеродной матрицей широко применяют при изготовлении химической аппаратуры.

 

Бороволокниты — это композиции из полимерного связующего и упрочнителя - борных волокон. Для получения бороволокнитов применяют модифицированные эпоксидные и полиимидные связующие. Бороволокниты имеют высокую прочность при сжатии, сдвиге, высокую твердость, тепло- и электропроводность. Бороволокниты водо- и химостойки. Изделия из бороволокнитов применяют в космической и авиационной технике (лопатки и роторы компрессоров, лопасти винтов вертолетов и т. д.).

 

Органоволокниты - это композиции из полимерного связующего и упрочнителей из синтетических волокон. Упрочнителями служат эластичные волокна, лавсан, капрон, нитрон и др. Связующими служат полиимиды, эпоксидные и фенолформальдегидные смолы. Органоволокниты имеют малую плотность, сравнительно высокую ударную вязкость. Органоволокниты применяют в авиационной технике, электропромышленности, химическом машиностроении и др.

 

Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используют легкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.

Использование композиционных материалов требует в ряде случаев создания новых методов изготовления деталей и изменения принципов конструирования деталей и узлов машин.

 

 

II. ПОРОШКОВЫЕ СПЛАВЫ

Сплавы, изготовляемые из металлических порошков путем прессования и спекания без расплавления или с частичным расплавлением наиболее легкоплавкой составляющей их, называются порошковыми.

Несмотря на то, что объем производства порошковых сплавов невелик и составляет всего 0,1% от общего объема производства металлов, они имеют очень большое значение в народном хозяйстве и область их применения чрезвычайно широка. При этом изготовление многих сплавов практически возможно только из порошка, например, изготовление твердых металлокерамических сплавов, керметов, сплавов из тугоплавких металлов — вольфрам, молибден, тантал, ниобий — или композиций этих металлов с легкоплавкими металлами, или из металлов с неметаллическими материалами. Многие детали из порошковых сплавов отличаются лучшими качествами и дешевле, чем из обычных металлов.

Области применения и составы порошковых сплавов приведены в табл. 1.

Особенно велико значение порошковой металлургии в новых отраслях техники: атомной и химической промышленности, ракетной технике, реактивных двигателях, радио- и электротехнике, энергетической промышленности и в производстве особо жаропрочных сплавов.

 

 

III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ

 

Процесс производства порошковых сплавов заключается в получении порошка, составлении шихты, прессовании и спекании.

 

Производство порошков. Важнейшими методами производства порошков являются:

  1. восстановление металлов из окислов;
  2. механическое измельчение;
  3. электролитическое осаждение;
  4. распыление жидкого металла;
  5. нагрев и разложение карбонитов.

Наибольшим распространением пользуются первые два метода.

Восстановление металлов из окислов широко применяется в производстве порошков тугоплавких редких металлов, вольфрама и молибдена, а также кобальта, никеля и железа. Руды редких металлов подвергаются сложной переработке и размолу для получения порошков окислов, которые восстанавливаются затем путем нагрева в газовой среде водородом, генераторным газом или твердыми восстановителями—сажей, коксом, графитом. Иногда применяется комбинированное восстановлена путем нагрева вместе с твердым и газовым восстановителем. Восстановление из окислов позволяет получить очень мелкие и чистые порошки.

 

Таблица 1.  Применение и состав порошковых сплавов

Тип порошковых сплавов

Назначение

Исходные материалы

Антифрикционные

Для подшипников скольжения

Порошки железа и графита Порошки меди, олова и графита

Фрикционные

Для тормозных дисков

Порошки меди, олова, свинца, графита, асбеста и пр. Порошки железа, свинца, графита и асбеста

Пористые

Для фильтров

Бронзовая дробь

Плотные

Для деталей машин из стали и жаропрочных и окалино-стойких сплавов

Порошки железа и различных металлов

Тугоплавкие

ДЛЯ проволоки ДЛЯ ламп

контактов и деталей приборов

Порошки вольфрама, молибдена и других туго-плавких металлов

Электротехнические

Для контактов н постоянных магнитов

Порошки меди, вольфрама и др. Порошки железа, алюминия, никеля и кобальта.

Твердые сплавы

Для режущего инструмента. Волок, буры

Порошки карбида вольфрама, карбида титана, кобальта


 

При механическом измельчении — размоле на шаровых, молотковых и особенно на вихревых мельницах — наиболее выгодным является использование металлической стружки. Шаровые мельницы применяются для размола хрупких металлов — чугуна, закаленной стали, бронзы, окислов и др. Молотковые мельницы применяются для получения порошков алюминия и бронзы.

С 1930 г. начали широко применять вихревые мельницы, в которых измельчение производится ударами частиц металла друг о друга под действием воздушных вихрей. Вихревое дробление применяется для производства железных порошков для пористых подшипников, стальных деталей и др. Некоторые металлы, например алюминий и магний, во избежание воспламенения измельчают в защитной атмосфере. Порошки, полученные путем механического измельчения, тверды, плохо прессуются и требуют отжига для снятия наклона.

Электролитическое осаждение применяется для производства порошков электроположительных металлов — меди и некоторых других металлов, например, титана, ванадия я других, а иногда также и железа.

Распыление жидкого металла потоком сжатого воздуха, пара или инертного газа сначала применяли для производства порошков легкоплавких металлов — алюминия, олова и свинца. В настоящее время этим методом распыляют также расплавленную сталь и чугун.

 

 

Испытание порошков. Порошковая металлургия предъявляет ряд требований к форме и размерам порошков. Например, для некоторых деталей требуются порошки чешуйчатой формы, полученные на вихревых мельницах, а для фильтров, наоборот, — шарообразной формы, полученные распылением. Прессуются лучше крупные порошки, особенно если среди них есть и мелкие частицы, а спекаются лучше мелкие. Зернистость порошков определяется путем ситового анализа: порошок просеивают через ряд сит с более мелкими отверстиями и взвешивают остатки с каждого сита. Форму зерен определяют, рассматривая их под микроскопом с сетчатым окуляром. Насыпной вес порошка определяется весом 1 см3 свободно насыпанного порошка. Он зависит от размера, формы и состояния поверхности его частиц и является очень важной его характеристикой.

При конструировании прессформ необходимо знать насыпной вес порошка, который будет в них прессоваться, чтобы определить объем полости матрицы и ход пуансона. Перед прессованием порошки просеивают, подвергают смягчающему или восстановительному отжигу и тщательно (длительно) перемешивают.

   

 Прессование. Для прессования применяют большей частью быстроходные легко автоматизируемые эксцентриковые (кривошипные) прессы, а иногда и тихоходные гидравлические прессы. Прессование производится в прессформах при давлении от 10 до 100 кГ/мм2 (от 98 до 981 Мн/м2) в зависимости от твердости порошка и формы изделия: чем тверже порошок, тем больше давление прессования, при этом усадка получается от 2:1 до 6:1.

Вследствие трения порошка о стенки прессформы процесс прессования получается прерывистым, ступенчатым, нагрузка и сжатие порошка меняются скачками. Важнейшую роль при сильных давлениях прессования играет пластическая деформация частиц порошка, которая вызывает увеличение поверхности соприкосновения (контактной поверхности) их между собой. Прочность прессования объясняется двумя причинами: атомарным схватыванием на контактной поверхности — «зацеплениями», переплетением неровностей на поверхности частиц порошка.

Информация о работе Порошковые и композиционные материалы