Применение стекломатериалов в авиастроении

Автор работы: Пользователь скрыл имя, 26 Мая 2013 в 07:56, реферат

Описание работы

Получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяются уровнем своего развития научно-технический и экономический потенциал страны.
Материалы с малой плотностью (легкие материалы) широко используются в авиации, ракетной и космической технике, а также в автомобилестроении, судостроении и других отраслях промышленности. Применение легких материалов дает возможность снизить массу, увеличить грузоподъемность летательных аппаратов без снижения скорости и дальности полета, повысить скорость движения автомобилей, судов, железнодорожного транспорта.

Содержание работы

Введение.
4
1.
Свойства стекла.
6
2.
Основы современной технологии получения стекла.
Состав, технология получения стекла.
11
3.
Типы стекла.
18
4.
Применение стекломатериалов в авиастроении.
24

Список литературы.

Файлы: 1 файл

Реферет,стекло.doc

— 799.00 Кб (Скачать файл)


Содержание

 

Введение.

4

1.

Свойства стекла.

6

2.

Основы современной  технологии получения стекла.

Состав, технология получения стекла.

11

3.

Типы стекла.

18

4.

Применение стекломатериалов в авиастроении.

24

 

Список литературы.

26


 

 

Введение.

Получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяются уровнем своего развития научно-технический и экономический потенциал страны.

Материалы с малой плотностью (легкие материалы) широко используются в авиации, ракетной и космической технике, а также в автомобилестроении, судостроении и других отраслях промышленности. Применение легких материалов дает возможность снизить массу, увеличить грузоподъемность летательных аппаратов без снижения скорости и дальности полета, повысить скорость движения автомобилей, судов, железнодорожного транспорта.

Комиссия по терминологии АН СССР дала такое определение стеклу:

"Стеклом называются все аморфные  тела, получаемые путем переохлаждения  расплава независимо от химического состава и температурной области затвердения и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым".

Стекло- считают техническим термином в отличие от научного термина "стеклообразное состояние". В стекле могут оказаться пузыри, мелкие кристаллики. В материале из стеклообразного вещества, может быть даже специально образовано очень большое число мельчайших кристалликов, делающих материал непрозрачным или придающих ему иную окраску. Такой материал называют "молочным" стеклом, окрашенным стеклом и т.д.

Современные понятия  различают термины "стекло" и "стеклообразное состояние". "Стеклообразного  состояния": "Веществом твердое некристаллическое, образовавшееся в результате охлаждения жидкости со скоростью, достаточной для предотвращения кристаллизации во время охлаждения". Н.В. Соломин, "стеклом называется материал, в основном состоящий из стеклообразного вещества".

Все вещества, находящиеся  в стеклообразном состоянии обладают несколькими общими физико-химическими  характеристиками. Типичные стеклообразные тела:

1. Изотопы, т.е. свойства их одинаковы во всех направлениях;

2.При нагревании не плавятся, как кристаллы, а постепенно размягчаются, переходя из хрупкого в тягучее, высоковязкое и в капельножидкое состояние;

3.Расплавляются и отвердевают обратимо, вновь приобретают первоначальные свойства.

Обратимость прессов  и свойств указывает на то, что  стеклообразующие расплавы и затвердевшее стекло являются истинными растворами. Переход вещества из жидкого состояния в твердое при понижении температуры может происходить двумя путями: вещество кристаллизуется либо застывает в виде стекла.

По первому пути могут  следовать почти все вещества. Однако путь кристаллизации обычен только для тех веществ, которые будучи в жидком состоянии, обладают малой вязкостью и вязкость которых возрастает сравнительно медленно, вплоть до момента кристаллизации.

Ко второй группе в  решающей мере зависят от концентрации щелочей или от концентрации каких либо других избранных компонентов. Зависимость их от состава влияет на: вязкость, электропроводность, скорость диффузии ионов, диэлектрические потери, химическая стойкость, светопропускание, твердость, поверхностное натяжение.

 

 

      1.Свойства стекла.

 

   Область применения  стекол определяется их свойствами. Так, для листовых  стекол важны  прочность на сжатие и растяжение, термические свойства, химическая  устойчивость, светопрозрачность. Ниже  рассмотрены важнейшие свойства стекла, характеризующие его в твердом состоянии.

Плотность. Плотностью называется отношение массы тела к его объему. Определяется она по формуле р = т / V , где р — плотность, г/см3; т — масса, г; V — объем, см3.

Стекло имеет плотность от 2,2 до 7,5 г/см3. Она определяется химическим составом. В состав тяжелых стекол (флинтов) входит много свинца, в состав легких — окислы элементов с малой атомной массой — лития, бериллия, бора. Большинство промышленных строительных стекол (оконное, полированное, профильное) имеет плотность 2,5—2,7 г/см3 в частности оконное стекло 2,55 г/см3. Плотность стекол в некоторой степени зависит и от температуры. Так, с повышением температуры   плотность   стекол   уменьшается.

Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. В зависимости от направления действия нагрузки определяют предел прочности при   сжатии,    растяжении,   изгибе и т.д.

Предел прочности стекол при сжатии R (кгс/мм2, Па) измеряют величиной разрушающей силы F (кгс), действующей на поперечное сечение S (мм2) образца перпендикулярно действующей силе: R =F/S.

Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм2, например прочность оконного стекла 90—100 кгс/мм2. Для сравнения можно указать, что прочность на сжатие чугуна 60—120, стали 200 кгс/мм2.

На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и В2О3 значительно повышают прочность, РЬО и А12О3 в меньшей степени, МgО, ZnО и Fе2О3 почти не изменяют ее.

Предел прочности при  растяжении определяют по формуле R = P/S, где R — предел прочности при растяжении, кгс/мм2 (Па); P — средняя величина разрушающего усилия, кгс; S — площадь шейки образца в момент разрыва, мм2.

Из механических свойств  стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие.

Прочность стекла на растяжение зависит от состояния поверхности стекла. Наличие на ней каких-либо повреждений (трещин, царапин) снижает прочность стекла в 4—5 раз. Поэтому для сохранения заданной прочности стекла необходимо оберегать его поверхность  от  повреждений,   например   покрывать кремний   органическими пленками. Химический состав влияет на   прочность   стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость. Твердость  — это способность материала  оказывать сопротивление проникновению  в него более твердого материала. От твердости зависит продолжительность  всех видов механической обработки (в производстве полированного автомобильного и технического стекла).

К твердым сортам относят  боросиликатные малощелочные стекла с содержанием В2О3 до 10—12%, твердость которых по шкале Мооса равна 7. Стекла с большим содержанием щелочных окислов имеют меньшую твердость. Наиболее мягкие — многосвинцовые силикатные стекла, твердость которых по шкале Мооса равна 5—6.

Хрупкость.Хрупкость стекол определяется способностью противостоять удару. Большая хрупкость стекол ограничивает их применение. В лабораторных условиях вместо хрупкости определяют микрохрупкость стекла, которая измеряется числом микротрещнн, образовавшихся на поверхности стекла при вдавливании в него алмазной пирамидки.

На хрупкость стекол влияют однородность, конфигурация и  толщина изделий: чем меньше посторонних  включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол В2О3, SiO2, А12Оз, ZrО2, МgО хрупкость незначительно понижается.

Теплоемкость.Удельная теплоемкость характеризуется количеством теплоты, необходимым для нагревания 1 г вещества на 1°С. Измеряется она в кал/г-град, ккал/кг-град (Дж/кг-К).   

Стекла имеют удельную теплоемкость от 0,08 до 0,25 кал/г-град в  зависимости от химического состава. Окислы тяжелых элементов РЬО, ВаО, как правило, понижают теплоемкость стекол, а окислы легких элементов типа Li2О повышают ее.

С повышением температуры  теплоемкость стекла увеличивается, причем до температуры начала размягчения она увеличивается незначительно, а при пластичном состоянии начинает возрастать быстрее. Увеличение теплоемкости стекла с повышением температуры происходит и в расплавленно-жидком состоянии.

Теплопроводность.Теплопроводность веществ измеряется количеством тепла, переносимым через единицу площади поперечного сечения образца в единицу времени при разности температур, равной единице:

Q = ,

где Q — переносимое количество тепла, кал; — коэффициент теплопроводности, кал/см-с-град или ккал/м-ч-град (вт/м-град); S — площадь, через которую происходит теплопередача, см2; а — толщина образца, см; I — разность температур, ° С; - время, с.  Стекло плохо проводит тепло. Коэффициент теплопроводности, стекол 0,0017—0,032 кал/см-с-град,  в частности для оконных стекол он равен 0,0023. Наибольший коэффициент теплопроводности имеет кварцевое стекло, поэтому при замене SiO2 любыми другими окислами теплопроводность стекла понижается.

С повышением температуры  теплопроводность стекол увеличивается. Так, при нагревании стекла до его температуры начала размягчения величина ее повышается примерно в два раза.

Температура начала размягчения.

Температура начала размягчения стекла характеризует температуру, при которой стекло (стеклоизделие) начинает деформироваться. Она играет существенную роль при производстве стекла. Например, температуру отжига стекла принимают обычно на 20—30° С ниже температуры начала его размягчения, с тем чтобы изделие не деформировалось при тепловой обработке.

Температура начала размягчения  стекла в основном определяется его химическим составом. Тугоплавкие окислы (размягчающиеся при высоких температурах), такие, как SiO2, А12О3, повышают температуру начала размягчения стекла, легкоплавкие окислы типа Nа2О, К2O, Li2О понижают ее.

Наивысшей температурой начала размягчения обладает кварцевое стекло (1200—1500° С). Большинство обычных строительных стекол, в том числе и оконное, начинает размягчаться при 550— 700° С.

Тепловое (термическое) расширение.

Твердые тела при нагревании увеличиваются в объеме. Увеличение линейных размеров тела при нагревании и есть тепловое линейное расширение. Для количественной характеристики линейного теплового расширения твердых тел служит коэффициент линейного теплового расширения а. Под коэффициентом линейного расширения понимают увеличение длины образца при нагревании его на 1° С, отнесенное к длине образца до нагревания, т. е.

 

 

где α — коэффициент  линейного расширения, 1/град; l0 — длина образца при температуре 0° С, см; lt — длина образца, нагретого до температуры t, ° С, см.

Иногда пользуются значениями коэффициента объемного расширения стекла, равным 3а.

Коэффициент линейного  теплового расширения стекол колеблется от 5-10~7 до 200 -10~7. Самый низкий коэффициент линейного расширения имеет кварцевое стекло — а = 5,8-10~7 (соответственно коэффициент объемного расширения 3а=17,4- 10~7). Оконное стекло имеет коэффициент линейного расширения 88·10-7 (у металлов, как правило, 100·10-7).

Величина α стекла в значительной степени зависит  от его химического состава. Наиболее сильно на термическое расширение стекол влияют щелочные окислы: чем больше содержание их в стекле, тем больше а. Тугоплавкие окислы типа SiO2, А12О3, МgО, а также В2О3, как правило, понижают а.

Коэффициент термического расширения важно знать при спаивании (спекании или сваривании) разных стекол, при производстве сортовых или листовых накладных стекол. Коэффициенты теплового расширения совмещаемых стекол должны быть близкими по величине, в противном случае такое изделие разрушится по шву от возникших напряжений.

Термическая устойчивость.

Термической устойчивостью (термостойкостью) называют способность стекла выдерживать, не разрушаясь, резкие изменения температуры. Термическая устойчивость играет существенную роль для стекол, которые используются в условиях резкой смены температуры.

Наибольшей термостойкостью  обладает кварцевое стекло, оно выдерживает  резкий перепад температур до 1000°  С. Термостойкость оконных стекол составляет 80—90° С.

Термостойкость стекла зависит от упругости, прочности на растяжение, теплопроводности, теплоемкости и главным образом от коэффициента термического расширения: чем выше коэффициент термического расширения стекла, тем ниже его термостойкость, и, наоборот, чем меньше коэффициент термического расширения, тем больше термостойкость.

Когда стекло охлаждается, его наружные слои стремятся уменьшиться в объеме. Этому препятствуют внутренние слои, остывающие медленно из-за малой теплопроводности стекла. Образующиеся напряжения между наружными и внутренними слоями приводят к разрушению стекла. Те же процессы протекают и при резком нагревании стекла. Разница заключается в том, что при охлаждении в стекле образуются напряжения растяжения, а при нагревании — напряжения сжатия. Следовательно, чем выше коэффициент термического расширения стекла, тем больше величина образующихся в стекле напряжений и тем меньше его термостойкость. Из этого также вытекает, что стекло лучше переносит резкое нагревание, чем охлаждение, так как при нагревании в нем образуются напряжения сжатия, а при охлаждении — растяжения. А стекло работает на сжатие в 15—20 раз лучше, чем на растяжение.

Информация о работе Применение стекломатериалов в авиастроении