Контрольная работа по материаловедению

Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 19:56, курсовая работа

Описание работы

Материаловедением называют прикладную науку о связи состава, строения и свойств материалов. Решение важнейших технических проблем, связанных с экономией материалов, уменьшением массы машин и приборов, повышением точности, надежности и работоспособности механизмов и приборов во многом зависит от развития материаловедения.
Теоретической основой материаловедения являются соответствующие разделы физики и химии, однако наука о материалах в основном развивается экспериментальным путем.
Напряжение – величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца.

Содержание работы

1 Опишите систему понятий, входящих в понятие «марка материала».
2. Сформулируйте принципы обозначения стандартных марок сталей.
3. Дайте расшифровку стандартных марок сталей.
4. Что необходимо понимать под термином «качество стали»?
5. Приведите основные характеристики механических свойств стали, по которым оцениваются стали конкретного назначения
6. Как и для чего нужно управлять количеством и качеством не металлических включений?
7. На какие свойства стали разного назначения влияет величина зерна?
8. Как управлять величиной зерна?
9. Что подразумевается под оптимальной структурой?
10. Опишите процесс закалки стали.
11. Как управлять типом структуры, образующейся при закалке.
12. Опишите понятия «закаливаемость» и «прокаливаемость».
13. Что такое «полоса прокаливаемости»?.
14. Что такое стали пониженной прокаливаемости?
15. Опишите процесс старения стали.
16. Перечислите требования к автомобильному листу.
17. Как понимать термин хорошая «свариваемость стали»?
18. От чего зависит контактная прочность стали?
19. Назовите уровни прочности канатной стали и опишите технологию упрочнения.
20. Назовите виды коррозионных повреждений нержавеющей стали.
Выбор и материаловедческое обоснование технологий формирования свойств.
21. Влияние холодной пластической деформации и последующего нагрева на структуру и свойства металла.
Список литературы

Файлы: 1 файл

Материаловедение.doc

— 825.50 Кб (Скачать файл)

Для получения при  закалке тонкого твердого слоя, равномерного по поверхности применяют мелкозернистые стали с пониженной прокаливаемостью, у которых ограничено содержание марганца и кремния, а также хрома, никеля, меди и пр. и создана устойчивая наследственная мелкозернистость путем модифицирования алюминием, титаном и пр. При увеличении содержания алюминия (сверх 0,10—0,12%) измельчение зерна прекращается, но так как твердый раствор продолжает обогащаться алюминием, прокаливаемость стали повышается.

Например:

В автомобильной промышленности для шестерен неответственного назначения, допускающих сквозную закалку зубьев (например, венец маховика автомобильных двигателей, работающий только при пуске), используют сталь с пониженной прокаливаемостью марки 55ПП содержащей 0,55 – 0,63%С и <0,5 % примесей (Si, Mn, Cr и Си) и регламентированной прокаливаемости 47РП, содержащей 0,44 – 0,51%С; 1,0 – 1,2 % Мn; 0,06 – 0,12%Ti.

 

15. Опишите процесс  старения стали

 

Старение – термическая  обработка, при которой главным  процессом является распад пересыщенного  твердого раствора.

В результате старения происходит изменение свойств закаленных сплавов.

В отличие от отпуска, после старения увеличиваются прочность и твердость, и уменьшается пластичность.

Старение сплавов связано  с переменной растворимостью избыточной фазы, а упрочнение при старении происходит в результате дисперсионных  выделений при распаде пересыщенного твердого раствора и возникающих при этом внутренних напряжений.

Основное назначение старения – повышение прочности  и стабилизация свойств.

Различают старение естественное, искусственное и после пластической деформации.

После старения повышается прочность и снижается пластичность низкоуглеродистых сталей в результате дисперсных выделений в феррите цементита третичного и нитридов.

 

16. Перечислите требования  к автомобильному листу

 

Основную массу производимого  холоднокатаного листа составляет автомобильный лист. Кузов автомобиля изготовлен холодной штамповкой (и точечной сваркой) из тонкого (0,5...3мм) листа. Листовым сталям необходим высокий запас технологической пластичности (способности металла подвергаться горячей и холодной пластической деформации).

Технологическая пластичность зависит от химического состава  стали, ее микроструктуры и контролируется параметрами механических свойств. Способность стали к вытяжке  при холодной штамповке определяется концентрацией углерода. Чем она  меньше, тем легче идет технологический процесс вытяжки. Для глубокой вытяжки содержание углерода в стали ограничивают 0,1%; при 0,2-0,3%C возможны только гибка и незначительная вытяжка.

Микроструктура стали  должна состоять из феррита с небольшим  количеством перлита. Выделение по границам зерен структурно свободного (третичного) цементита строго ограничивается во избежание разрывов при штамповке. Лучше всего деформируется сталь с мелким зерном, соответствующим 7-8 номеру по ГОСТ 5639-82. При большем размере зерна получается шероховатая поверхность в виде так называемой апельсиновой корки, при меньшем – сталь становится слишком жесткой и упругой. Также нежелательна разнозернистая структура, поскольку она способствует неравномерности деформации и образованию трещин.

Для глубокой, сложной и особосложной вытяжки используют малопрочные (σв = 280-ЗЗО МПа), высокопластичные (δ = 33-45 %) стали 05, 08, 10 всех видов раскисления. Их поставляют в виде тонкого холоднокатаного листа, подвергнутого рекристаллизационному отжигу при температуре 650-690 °С. Широко применяют кипящие стали 05кп, 08кп и 10кп. Для глубокой вытяжки чаще всего используют сталь 08кп.

Кипящая сталь из-за повышенной газонасыщенности склонна к деформационному  старению. В связи с этим для  холодной штамповки используют сталь, микролегированную ванадием 08Фкп (0,02-0,04%V) или алюминием 08Юкп. Ванадий и алюминий связывают примеси внедрения (азот, кислород) в прочные химические соединения и препятствуют развитию деформационного старения.

Применяются также полуспокойные  и спокойные стали 08пс и 08, которые, несмотря на меньшую пластичность, обладают более высокой стабильностью свойств.

 

 

17. Как понимать термин  хорошая «свариваемость стали»?

 

Свариваемость - способность  получения сварного соединения, равнопрочного  с основным металлом. Для образования качественного соединения важно предупредить возникновение в сварном шве различных дефектов: пор, непроваров и, главным образом, трещин. Характеристикой свариваемости данного металла служат количество допускаемых способов сварки и простота ее технологии.

Свариваемость стали  тем выше, чем меньше в ней углерода и легирующих элементов. Влияние  углерода является определяющим. Углерод  расширяет интервал кристаллизации и увеличивает склонность к образованию  горячих трещин, которая тем больше, чем дольше металл шва находится в жидком состоянии.

В связи с этим высокой  свариваемостью обладают стали, содержащие до 0,25% С. К ним относятся углеродистые стали (БСт0, БСт1-БСт4, ВСт1-ВСт4; 0,5, 08, 10, 15, 20, 25), а также низколегированные, применяемые для изготовления различных металлоконструкций: стали для трубопроводов, мостостроения, вагоностроения, судостроения 09Г2(Д), 09Г2С, 14Г2, 15ГФ(Д), 16ГС, 17ГС и др.; стали с карбонитридным упрочнением, применяемые для мостов, металлоконструкций цехов, кранов, резервуаров 14Г2АФ(Д), 15Г2СФ(Д), 16Г2АФ и др.

Сварка всех этих сталей при толщинах до 15 мм не вызывает затруднений. Сварка таких же сталей больших толщин и в термически упрочненном состоянии  требует подогрева и термической  обработки.

При сварке углеродистых и низколегированных сталей, содержащих более 0,3%С, возникают затруднения из-за возможности закалки и охрупчивания околошовной зоны.

Сварка высокохромистых  и хромоникелевых сталей в связи  с неизбежными фазовыми превращениями  в металле требует специальных технологических приемов – снижения скорости охлаждения, применения защитных атмосфер и последующей термической обработки.

 

18. От чего зависит  контактная прочность стали?

 

Для того чтобы обеспечить работоспособность конкретных машин  и приборов, конструкционный материал должен иметь высокую конструкционную прочность.

Конструкционной прочностью называется комплекс механических свойств, обеспечивающих надежную и длительную работу материала в условиях эксплуатации.

Требуемые характеристики механических свойств материала для конкретного изделия зависят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.

Высокая прочность и  долговечность конструкций при  минимальной массе и наибольшей надежности достигаются технологическими, металлургическими и конструкторскими методами.

Наибольшую эффективность  имеют технологические и металлургические методы, цель которых – повышение  механических свойств и качества материала.

Прочность – свойство, зависящее от энергии межатомной связи, структуры и химического состава материала. Энергия межатомного взаимодействия непосредственно определяет характеристики упругих свойств (модули нормальной упругости и сдвига), а также так называемую теоретическую прочность.

Проблема повышения  конструкционной прочности состоит не столько в повышении прочностных свойств, сколько в том, как при высокой прочности обеспечить высокое сопротивление вязкому разрушению, т. е. надежность материала.

В углеродистых сталях закалкой на мартенсит и низким отпуском можно получить при содержании 0,4%С σв≈2400 МПа, при 0,6%С σв≈2800 МПа. Однако при такой прочности стали хрупки, эксплуатационно ненадежны.

Заданные прочность, надежность, долговечность достигаются формированием  определенного структурного состояния.

Формированию благоприятной структуры и обеспечению надежности способствуют рациональное легирование, измельчение зерна, повышение металлургического качества.

 

19. Назовите уровни  прочности канатной стали и  опишите технологию упрочнения

 

Канатную проволоку  свивают в канаты (для судов, шахт, лифтов, кранов). При диаметре 1 мм и менее стандарты разных стран гарантируют для канатной проволоки предел прочности σв > 1300...2400 МПа.

При такой прочности  проволоке нужен и запас пластичности: нити каната должны выдерживать перегибы и удары. Этот запас проверяется испытаниями: на многократный «гиб с перегибом», скручивание, навивку, разрыв с узлом. Необходимая структура – тонкопластинчатый перлит (сорбит), упрочняемый холодным волочением. Чтобы выдерживать при этом большие обжатия, нужна эвтектоидная сталь – углеродистая сталь 65...85.

Чем тоньше пластинки  цементита в перлите, тем больше упрочнение. Пластинки тем тоньше, чем ниже температура распада  переохлажденного аустенита. Оптимальную  температуру изотермического распада  надо быстро достичь (если распад начнется выше, перлит грубее) и точно выдержать (чуть ниже появятся менее пластичные игольчатые структуры - бейнит). Поэтому делается патентирование: протягиваемая проволока проходит через печь (или соляную ванну) нагрева и быстро охлаждается до температуры распада аустенита в ванне с расплавом свинца или солей. После волочения делается еще низкий отпуск для снятия напряжений.

К стали для патентирования есть ряд жестких требований

Во-первых, чистота по легирующим элементам (Сг < 0,10%; Ni < 0,15%; Сu < 0,2%), иначе изотермический распад аустенита за время пребывания в свинцовой ванне не закончится, а остаток аустенита на выходе из ванны даст хрупкий мартенсит или бейнит. Использование лома в шихте исключается.

Во-вторых, вытягиваясь при волочении, границы зерна исходного аустенита превращаются в ленты вдоль оси проволоки. Если на них были сегрегации фосфора или наночастицы AlN или MnS, проволока расслаивается по этим лентам при скручивании (или при волочении). Поэтому когда-то сталь для пружин плавили только из древесноугольного чугуна (чистого по фосфору и сере). Сегодня его заменило железо прямого восстановления.

В-третьих, важна чистота  по неметаллическим включениям. Если включения деформируемы и при  холодном волочении (как MnS), то из округлых в слитке они превратятся в нити макроскопической длины и субмикронной толщины, а включения - дендриты - в пучок нитей, по которым и произойдет расслой. Канаты из стали 60 с округлыми сульфидами (от введения РЗМ) выдерживали 25000 перегибов, а с длинными включениями - только 18000.

 

20. Назовите виды коррозионных  повреждений нержавеющей стали

 

Коррозией – называется разрушение металлов и сплавов вследствие химического и физико-химического  воздействия на них окружающей среды. При техническом проектировании серьезное внимание уделяется мероприятиям защиты от коррозии.

Различают два вида коррозии металлов: химическую и электрохимическую.

Химическая коррозия происходит при воздействии на металл или сплав сухих газов при  повышенных температурах и жидких неэлектролитов (бензин, смола, масло и др.).

Электрохимическая коррозия происходит при действии на металлы  жидких электролитов (водные растворы солей, щелочи, кислоты), влажного воздуха, т.е. проводников электричества. В  технике больше всего приходится иметь дело с электрохимической коррозией.

По условиям протекания коррозия делится, в зависимости  от окружающей среды, на газовую, жидкостную, почвенную, атмосферную. А в зависимости  от дополнительных внешних воздействий  на щелевую, контактную, радиационную, под напряжением, при ударном и истирающем воздействии, биокоррозию и органогенную.

По характеру разрушений металлов в результате воздействия  агрессивных сред коррозия разделяется  на общую (сплошную) и локальную (местную).

Общую коррозию разделяют на равномерную и неравномерную, а локальную – на коррозию пятнами, язвами, точками и подповерхностную, структурно-избирательную, компонентно-избирательную, межкристаллитную (МКК), ножевую – в зоне сварного шва.

В особый вид выделяют коррозионное растрескивание, вызываемое дополнительными напряжениями.

Локальная коррозия более  опасна, нежели общая, так как при  сравнительно небольшой потере массы  металла механические и функциональные характеристики аппаратуры резко снижаются. Примером локальной коррозии являются свищи в стенках аппаратов, емкостей, трубопроводов и т.д.

 

21. Влияние холодной пластической деформации и последующего нагрева на структуру и свойства металла.

 

При обработке металла  давлением изменяется не только форма  заготовки, но и происходит сложный физический процесс, влияющий на структуру металла, а следовательно, на его механические и физические свойства. Пластическая деформация металла происходит за счет внутрикристаллитных (внутризеренных) и межкристаллитных (межзеренных) сдвигов (сдвиги происходят по плоскостям скольжения под углом 45º к направлению действующей силы) (рис. 2). Чем больше образуется сдвигов, т. е. чем больше пластическая деформация, тем больше упрочнение (наклеп) и тем большее усилие потребуется для дальнейшего деформирования металла. Пластическая деформация зависит от природы металла, температуры, скорости и степени деформации, поэтому различают горячую, неполную горячую и холодную обработку давлением.

 

 

 

Рис. 2.

Схема изменения  строения металла в плоскости  сдвига: а — зерно до сдвига; б — зерно после сдвига; в — кристаллическая решетка

 

 

Горячей обработкой называют такую обработку, в процессе которой  рекристаллизация проходит настолько  полно, что металл по окончании обработки  давлением имеет рекристаллизованную  структуру без следов упрочнения. Для чистых металлов явление рекристаллизации возникает при температурах, по данным профессора Бочвара А. А., около 0,4 от абсолютной температуры плавления.

Информация о работе Контрольная работа по материаловедению