Конструкционные порошковые материалы

Автор работы: Пользователь скрыл имя, 28 Мая 2013 в 21:10, реферат

Описание работы

Конструкционными называются стали, предназначенные для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строи-тельные стали).
Углеродистые конструкционные стали
Углеродистые конструкционные стали подразделяются на стали обыкновен-ного качества и качественные.
Стали обыкновенного качества изготавливают следующих марок Ст0, Ст1, Ст2,..., Ст6 (с увеличением номера возрастает содержание углерода).

Содержание работы

1. Конструкционные стали и сплавы.
1.1. Углеродистые конструкционные стали.
1.2.Легированные конструкционные стали.
1.3. Строительные низкоуглеродистые стали.
1.4. Арматурные стали.
1.5. Стали для холодной штамповки.
1.6. Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали.
1.7. Конструкционные (машиностроительные) улучшаемые легированные стали.
1.8. Стали с повышенной обрабатываемостью резанием.
1.9. Мартенситно-стареющие высокопрочные стали.
1.10. Высокопрочные стали с высокой пластичностью
1.11. Рессорно-пружинные стали общего назначения.
1.12. Шарикоподшипниковые стали.
1.13. Износостойкие стали.
1.14. Коррозионно-стойкие и жаростойкие стали и сплавы.
1.15. Криогенные стали.
1.16. Жаропрочные стали и сплавы.
2. Инструментальные стали и твердые сплавы.
2.1. Стали для режущего инструмента.
2.2. Стали для измерительного инструмента.
2.3. Стали для штампов холодного деформирования.
2.4. Стали для штампов горячего деформирования.
2.5. Твердые сплавы.
3. Стали и сплавы с особыми физическими свойствами.
3.1. Магнитные стали и сплавы.
3.2. Металлические стекла (амфорные сплавы).
3.3. Стали и сплавы с высоким электрическим сопротивлением для нагревательных элементов.
3.4. Сплавы с заданным температурным коэффициентом линейного расширения.
3.5. Сплавы с эффектом "памяти формы".
4. Тугоплавкие металлы и их сплавы.
5. Титан и сплавы на его основе.
5.1. Титан.
5.2. Сплавы на основе титана.
6. Алюминий и сплавы на его основе.
6.1. Алюминий.
6.2. Классификация алюминиевых сплавов.
6.3. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой.
6.4. Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой.
6.5. Литейные алюминиевые сплавы.
7. Магний и сплавы на его основе.
7.1. Магний.
7.2. Сплавы на основе магния.
8. Медь и сплавы на ее основе.
8.1. Медь.
8.2. Сплавы на основе меди.
9. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и
алюминиевой основах.
10. Композиционные материалы с металлической матрицей.
11. Конструкционные порошковые материалы.

Файлы: 1 файл

машинные стали и сплавы - копия.docx

— 47.13 Кб (Скачать файл)

Технический алюминий изготавливают  в виде листов, профилей, прутков,

проволоки и других полуфабрикатов и маркируют АДО и АД1.

Классификация алюминиевых  сплавов 

Наибольшее распространение  получили сплавы Al-Cu, Al-Si, Al-Mg, Al-Cu-Mg  и другие. Все сплавы алюминия можно разделить на деформируемые, предназначенные для получения полуфабрикатов (листов, плит, прутков и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки, и литейные, предназначенные для фасонного литья.

Сплавы алюминия, обладая  хорошей технологичностью во всех стадиях передела, малой плотностью, высокой коррозийной стойкостью, при достаточной прочности, пластичности и вязкости нашли широкое  применение в авиации, судостроении, строительстве и других отраслях народного хозяйства.

Деформируемые алюминиевые  сплавы,упрочняемые термической обработкой

Дуралюмины. Дуралюминами называются сплавы Al-Cu-Mg, в которые

дополнительно вводят марганец. Типичным дуралюмином является сплав  Д1.

Марганец повышает стойкость  дуралюмина против коррозии, а присутствуя в виде дисперсных частиц фазы Т, повышает температуру рекристаллизации и улучшает  механические свойства.

Дуралюмин, изготовляемый  в листах, для защиты от коррозии подвергают плакированию, т.е. покрытию тонким слоем алюминия высокой чистоты.

Из сплава Д16 изготовляют  обшивки, шпангоуты, стрингера и  лонжероны самолетов, силовые каркасы, строительные конструкции, кузова грузовых автомобилей и т.д.

Сплав Д16 - s0.2=400МПа, sв=540МПа, d=11%.

Сплавы авиаль (АВ). Эти  сплавы уступают дуралюминам по прочности, но обладают лучшей пластичностью в холодном и горячем состояниях. Авиаль удовлетворительно обрабатывается резанием (после закалки и старения) и сваривается контактной и аргонодуговой сваркой. Сплав обладает высокой общей сопротивляемостью коррозии, но склонен к межкристаллической.

Из сплава АВ изготовляют  различные полуфабрикаты (листы, трубы  и т.д.), используемые для элементов конструкций, несущих умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованые детали двигателей, рамы, двери, для которых требуется высокая пластичность в холодном и горячем состояниях.

Сплав АВ - s0.2=200МПа, sв=260МПа, d=15%.

Высокопрочные сплавы. Предел прочности этих сплавов достигает 550-700МПа,но при меньшей пластичности, чем у дуралюминов. Представителем высокопрочных алюминиевых сплавов является сплав В95.

При увеличении содержания цинка и магния прочность сплавов  повышается, а их пластичность и коррозийная стойкость понижаются. Добавки марганца и хрома улучшают коррозийную стойкость. Сплавы обладают хорошей пластичностью в горячем состоянии и сравнительно легко деформируются в холодном состоянии после отжига.

Сплав В95хорощо обрабатывается резанием и сваривается точечной сваркой, его применяют в самолетостроении для нагруженных конструкций, работающих длительное время при t<=100¸120°С. Сплав В95 рекомендуется для сжатых зон конструкций и для деталей без концентраторов напряжений.

Сплав В95 - s0.2=530-550МПа, sв=560-600МПа, d=8%.

Сплавы для ковки и  штамповки. Сплавы этого типа отличаются высокой пластичностью и удовлетворительным литейными свойствами, позволяющими получить качественные слитки. Сплав АК6 используют для деталей сложной формы и средней прочности, изготовление которых требует высокой пластичности в горячем состоянии. Сплав АК8 рекомендуют для тяжелонагруженных штампованных деталей.

Сплав АК8 - s0.2=300МПа, sв=480МПа, d=10%.

Жаропрочные сплавы. Эти  сплавы используют для деталей, работающих при температуре до 300°С. Жаропрочные сплавы имеют более сложный химический состав, чем рассмотренные выше алюминиевые сплавы. Их дополнительно легируют железом, никелем и титаном.

Сплав Д20 - s0.2=250МПа, sв=400МПа, d=12%.

Деформируемые алюминиевые  сплавы, не упрочняемые термической обработкой

К этим сплавам относятся  сплавы алюминия с марганцем или  с магнием. Упрочнение сплавов достигается в результате образования твердого раствора и в меньшей степени избыточных фаз.

Сплавы легко обрабатываются давлением, хорошо свариваются и  обладают высокой

коррозийной стойкостью. Обработка  резанием затруднена.

Сплавы (АМц, АМг2, АМг3) применяют  для сварных и клепанных элементов конструкций, испытывающих небольшие нагрузки и требующие высокого сопротивления коррозии.

Сплав АМг3 - sв=220МПа, s0.2=110МПа, d=20%.

Литейные алюминиевые  сплавы

Сплавы для фасонного  литья должны обладать высокой жидкотекучестью,

сравнительно небольшой  усадкой, малой склонностью к  образованию горячих трещин и пористости в сочетании с хорошими механическими свойствами,сопротивлением коррозии и др.

Сплавы Al-Si (силумины). Отличаются высокими литейными свойствами, а отливки - большой плотностью. Сплавы Al-Si (АЛ2, АЛ4, АЛ9) сравнительно легко обрабатываются резанием. Заварку дефектов можно производить газовой и аргонодуговой сваркой.

Сплав АЛ9 - sв=200МПа, s0.2=140МПа, d=5%.

     Сплавы Al-Cu. Эти  сплавы (АЛ7, АЛ19) после термической  обработки имеют

высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием. Литейные свойства низкие.

Сплав АЛ7 используют для  отливки небольших деталей простой  формы, сплав склонен к хрупкому разрушению.

Сплав АЛ7 - sв=240МПа,s0.2=160МПа, d=7%.

Сплавы Al-Mg. Имеют низкие литейные свойства. Характерной особенностью этих сплавов является хорошая коррозийная стойкость, повышенные механические свойства и обрабатываемость резанием.

Сплавы АЛ8, АЛ27, АЛ13 и АЛ22 предназначены для отливок, работающих во влажной атмосфере, например, в судостроении и авиации.

Сплав АЛ8 - sв=350МПа, s0.2=170МПа, d=10%.

Жаропрочные сплавы. Наибольшее применение получил сплав АЛ1, из которого изготавливают поршни, головки цилиндров и другие детали, работающие при температуре 275-300°С.

Сплав АЛ1 - sв=260МПа, s0.2=200МПа, d=0.6%.

Магний и сплавы на его  основе

Магний 

Магний - металл светло-серого цвета. Характерным свойством магния является его

малая плотность (1.74г/см3). Температура  плавления магния 650°С.

Кристаллическая решетка  гексагональная. Технический магний выпускают трех марок

МГ90, МГ95 и МГ96. Механические свойства литого магния: sв=115МПа, s

0.2=25МПа, d=8%, 30НВ. На воздухе  магний легко воспламеняется.

Используется магний в  пиротехнике и химической промышленности.

Сплавы на основе магния

Сплавы магния обладают малой  плотностью, высокой удельной прочностью, хорошо поглощают вибрации, что определило их широкое использование в авиационной и ракетной технике. Однако сплавы магния имеют низкий модуль нормальной упругости 43000МПа и плохо сопротивляются коррозии.

Литейные сплавы. Широко применяется сплав МЛ5, в котором  сочетаются высокие механические и литейные свойства. Он используется для литья нагруженных крупногабаритных отливок.

Сплав МЛ6 обладает лучшими  литейными свойствами, чем МЛ5, и  предназначается для изготовления тяжелонагруженных деталей.

Сплав МЛ5 - sв=226МПа, s0.2=85МПа, d=5%.

Деформируемые сплавы. Эти  сплавы изготовляют в виде горячекатаных прутков, полос, профилей, а также поковок и штамповых заготовок.

Сплав МА1 обладает сравнительно высокой технологической пластичностью, хорошей свариваемостью и коррозионной стойкостью.

Сплав МА2-1 обладает достаточно высокими механическими свойствами, хорошей свариваемостью, однако склонен к коррозии под напряжением, поддается всем видам листовой штамповки и легко прокатывается.

Сплав МА1 - sв=190-220МПа, s0.2=120-140МПа, d=5-10%.

Медь и сплавы на ее основе

Медь 

Медь - металл красного, в  изломе розового цвета. Температура  плавления 1083°С.Кристаллическая решетка ГЦК. Плотность меди 8.94г/см3. Медь обладаетвысокими электропроводимостью и электропроводимостью. В зависимости от чистоты медь изготавливают следующих марок: М00, М0, М1, М2, М3. Присутствующие в меди примеси оказывают большое влияние на ее свойства.Медь хорошо сопротивляется коррозии, легко обрабатывается давлением, но плохо резанием и имеет невысокие литейные свойства из-за большой усадки.

Сплавы на основе меди

Различают две основные группы медных сплавов: 1) латуни - сплавы меди с цинком; 2) бронзы - сплавы меди с другими элементами. Медные сплавы обладают высокими механическими и техническими свойствами, хорошо сопротивляются коррозии и износу.

Латуни. Латунями называют двойные  или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк.

Когда требуется высокая  пластичность, повышенная теплоотводность  применяют латуни с высоким содержанием меди (Л06 и Л90). Латуни Л62, Л60,Л59 с большим содержанием цинка обладают более высокой прочностью, лучше обрабатываются резанием, дешевле, но хуже сопротивляются коррозии.

Латунь ЛЦ40С - sв=215МПа, d=12%, 70НВ.

Оловянные бронзы. Обладают хорошими литейными свойствами и  применяются для литья деталей сложной формы. Недостатком отливок из оловянных бронз является большая микропористость. Их часто применяют для изготовления антифрикционных деталей. Бронза БрО3Ц12С5 - sв=200МПа, d=5%.

Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основе. Эти сплавы применяют для заливки вкладышей подшипников скольжения. Они должны иметь достаточную твердость, но не очень высокую, сравнительно легко деформироваться под влиянием местных напряжений, иметь малый коэффициент трения между валом и подшипником.

Кроме того, температура  плавления этих сплавов не должна быть высокой, и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии.

Оловянные и свинцовые  баббиты. Оловянные баббиты используют в подшипниках турбин крупных судовых дизелей, турбонасосов, турбокомпрессоров, электрических и других тяжелонагруженных машин. Свинцовые баббиты применяют для менее нагруженных подшипников. Баббиты имеют небольшую прочность sв=60¸120МПа.

     Цинковые и  антифрикционные сплавы. Чаще применяют  сплавы ЦАМ 10-5 и ЦАМ 9.5-1.5, содержащие кроме алюминия и меди 0.03-0.06% Mg. В литом виде сплавы применяют для монометаллических вкладышей, втулок и т.д.; сплав ЦАМ 10-5 применяется и для отливки биметаллических изделий со стальным корпусом.

Алюминиевые антифрикционные (подшипниковые) сплавы. Чем больше в сплавы

олова, тем выше его антифрикционные  свойства.

Сплавы АО3-1 и АО9-2 применяют  для литья монометаллических  вкладышей м втулок толщиной более 10мм. Сплавы АО20-1 и АН-2.5 предназначаются для получения биметаллической ленты со сталью методом прокатки с последующей штамповкой вкладышей. Подшипники из сплава АН-2.5 можно изготовлять и литьем.

Композиционные материалы  с металлической матрицей

Композиционные материалы  состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы).

Волокнистые композиционные материалы. Композиционные материалы отличаются от обычных сплавов высокими значениями временного сопротивления и предела выносливости (на 50-100%), модуля упругости, коэффициента жесткости (Е/g) и пониженной склонностью к трещинообразованию. Применение этих материалов повышает жесткость конструкций при одновременном снижении ее металлоемкости. Композиционный материал бор-алюминий (ВКА-1А) - sв=1300МПа, s-1 =60МПа, Е=220Гпа, sв/g=500, Е/g=84.6.

Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.

Композиционные материалы  применяются в авиации, в космической  технике, в горной промышленности, в гражданском строительстве и в других областях народного хозяйства.

Конструкционные порошковые материалы

Порошковыми называют материалы, изготовляемые путем прессования  металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме или защитной атмосфере при температуре 0.75-0.8Т пл.

Антифрикционные порошковые сплавы имеют низкий коэффициент  трения, легко обрабатываются, выдерживают значительные нагрузки и имеют хорошую износостойкость. Наибольшее применение получил материал ФМК-11.

Сплавы на основе цветных  материалов (АЛП-2, АЛПД-2-4, БрПБ-2, ЛП58Г2-2 и др.) применяют в приборостроении и электронной технике.

Применение порошковых материалов рекомендуется при изготовлении деталей простой симметричной формы, малых массе и размеров.

 

Список используемой литературы

 

1. Арзамасов Б.Н.  « Материаловедение». М.: Изд-во МГТУ им. Н. Э. Баумана, 2008. - 648с.: ил.

Информация о работе Конструкционные порошковые материалы