Автоматизация доменного процесса. АСК давления природного газа. Расчет измерительной схемы автоматического потенциометра (0–700˚С)

Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 18:53, курсовая работа

Описание работы

В настоящее время в России разрабатывается и внедряется комплексная система автоматического управления с применением УВМ. В состав комплексной системы входят подсистемы управления шихтовкой и шихтоподачей, управления тепловым и газодинамическим режимами и управления ходом печи. По предварительным расчетам, внедрение комплексной системы повысит производительность печей на 9–11% и снизит расход кокса на 12 – 14%. Несмотря на высокую стоимость комплексной системы управления, срок ее окупаемости менее двух лет.

Содержание работы

Введение
1 Доменный процесс
1.1 Анализ доменного процесса, как объекта автоматизации
1.2 Статические и динамические характеристики доменного процесса
1.3 Автоматический контроль основных параметров доменного процесса
2 Использование природного газа в доменных печах
3 Анализ современных методов автоматического контроля давления и выбор наиболее рационального метода
3.1 Классификация приборов для измерения давления
3.1.1 Жидкостные приборы
3.1.2 Поршневые манометры
3.1.3 Пружинные приборы
3.1.4 Мембранные приборы
3.1.5 Манометры сопротивления
3.1.6 Емкостные манометры
3.1.7 Пьезоэлектрические манометры
3.1.8 Теплопроводные манометры
3.2 Выбор рационального метода измерения давления природного газа
4 Расчет измерительной схемы автоматического потенциометра
5 Описание работы принципиальной схемы автоматического контроля давления природного газа
Заключение
Список использованной литературы

Файлы: 1 файл

Сибирский Федеральный Университет «институт цветных металлов и м.doc

— 687.60 Кб (Скачать файл)

Система придет в равновесие, когда усилие, развиваемое мембраной, уравновесится силой пружины и сердечник возвратится в исходное среднее положение. При этом оси лекала и стрелки местной шкалы 6 прибора поворачиваются на угол, пропорциональный перепаду давления. С осью лекала кинематически связаны оси рамок 8 ферродинамических датчиков (от одного до трех), предназначенных для дистанционной передачи показаний.

 

Рисунок 24 – схема мембранного компенсационного дифманометра:

1 – сердечник; 2 – вялая мембрана; 3 – пружина; 4 – рычаг;

5 – лекало; б – Шкала; 7 – реверсивный двигатель; 8 – рамка

ферродинамического датчика; 9 – электронный усилитель

 

Приборы имеют различные пределы  измерения разности давлений, от 6,18 до 21,3 кПа (63–160 мм рт. ст.). Максимальное допустимое рабочее давление 1,56 МПа (16 кг/см2). Основная допустимая погрешность дифманометра в комплекте с вторичным прибором ±1,5% от максимального предела шкалы.

3.1.5 Манометры сопротивления

Действие приборов основано на изменении сопротивления проводника под действием внешнего давления. Электрическими проводниками принципиально могут служить любые металлы и сплавы, а также полупроводники. Однако для использования в манометрах сопротивления наиболее подходящим материалом является манганин, так как он обладает малым температурным коэффициентом сопротивления.

Недостаток манганина  заключается в малом изменении  сопротивления от действия давления (малый пьезокоэффициент).

Если обозначить сопротивление  проводника, подвергаемого давлению, через R, изменение сопротивления – через , а давление – через р, то изменение сопротивления будет следовать линейному закону

 

,

 

где k – пьезокоэффициент, величина которого зависит от материала проводника. Из этого соотношения следует, что

 

.

 

Значения пьезокоэффициента  не только различны для разных материалов, но непостоянны даже для одного и того же материала. Для манганина .

Малая величина пьезокоэффициента  обусловливает целесообразность применения манганиновых манометров только для  измерения высоких и сверхвысоких давлений. Одна из конструкций манганинового манометра показана на рисунке 25. Воспринимающей частью манометра является однослойная катушка 1 диаметром 8 мм из манганиновой проволоки диаметром 0,05 мм, намотанной бифилярно. Сопротивление катушки 180–200 ом. Один конец обмотки катушки припаян к гайке 2, а другой – к медному стержню 3. Стержень проходит через канал в гайке. Центральное положение стержня в канале обеспечивается эбонитовыми втулками 4 и 5. Уплотнение стержня достигается набивкой из фибровых и резиновых колец 6, сжатых гайкой 7. Гайка 2 ввертывается в корпус 8, снабженный ниппелем 9 для присоединения к аппарату или трубопроводу, в котором измеряется давление.

Для измерения сопротивления  может быть использован любой  измеритель электрических сопротивлений, например электронный уравновешенный мост. Пьезокоэффициент для разных образцов манганина непостоянен, поэтому манганиновые манометры сопротивления необходимо калибровать после изготовления.

 

Рисунок 25 – манганиновый манометр сопротивления: 1 – катушка; 2 и 7 – гайки; 3 – стержень; 4 и 5 – втулки; 6 – кольца; S – корпус; 9-ниппель

 

При линейной зависимости можно  калибровать путем измерения  сопротивления манганиновой катушки  при двух различных давлениях, одним  из которых может быть атмосферное  давление. По литературным данным, линейная зависимость сопротивления манганина от давления проверена до 3000 МПа (30 000 кг/см2), Точность измерения давления манганиновым манометром зависит главным образом от точности измерения сопротивления катушки, качества калибровки и от точности определения калибровочных давлений. Погрешность измерения обычно не превышает ± 1% предела шкалы. Кроме металлических датчиков, в манометрах сопротивления применяются полупроводниковые датчики.

Известны конструкции  манометров с угольными столбиками, составленными из тонких дисков диаметром 5–10 мм и толщиной 1,0 мм, изготовленных из электродного угля. У такого столбика при сжатии уменьшается сопротивление, что объясняется улучшением контактов между отдельными дисками. Пьезокоэффициент угольного столбика в тысячи раз больше, чем манганина; однако нелинейная зависимость сопротивления от давления, большой гистерезис, непостоянство градуировки и значительное влияние температуры ограничивают применение угольных манометров.

Использование других полупроводников пока не вышло из пределов лабораторных исследований.

Все полупроводниковые  датчики пригодны для измерения  давлений не выше 5,88–7,84 МПа.

3.1.6 Емкостные манометры

Действие приборов основано на изменении емкости плоского конденсатора при изменении расстояния между обкладками.

Емкость плоского конденсатора, состоящего из двух обкладок, выражается зависимостью

 

,

 

где – диэлектрическая проницаемость среды между обкладками; s – площадь одной из обкладок; – расстояние между обкладками.

С уменьшением  емкость возрастает по гиперболическому закону. Поэтому выгодно работать при малом начальном значении , что создает большую чувствительность и возможность работы на линейном участке характеристики.

Устройство одного из емкостных манометров показано на рисунке 26. Корпус датчика снабжен ниппелем для присоединения к объекту измерения. В дно ниппеля впаяна мембрана, воспринимающая давление. В верхнюю часть корпуса ввернута втулка 3, положение которой относительно корпуса может фиксироваться контргайкой. Внутрь втулки 3 вставлен керамический цилиндр – изолятор с электродом. Электрод оканчивается диском, являющимся второй обкладкой конденсатора.

Под действием давления мембрана прогибается, изменяется расстояние между ней и диском, увеличивается  емкость конденсатора. Выбирая размеры мембраны, можно создавать приборы для измерения давлений в широком диапазоне.

 

Рисунок 26 – Емкостной манометр: 1 – корпус датчика; 2 – мембрана; 3 – втулка; 4 – контргайка; 5 – изолятор; 6 – электрод; 7 – диск

 

На показание емкостных манометров влияет температура окружающей среды. При изменении температуры изменяются размеры датчика, особенно расстояние между обкладками.

Недостатком емкостных  манометров является также большое  влияние паразитных емкостей, главным  образом соединительных проводов и металлических частей установки, которое проявляется неодинаково и зависит от взаимного расположения деталей.

Погрешность измерений  не превышает ±1,5–2% предела шкалы прибора. Измерителями емкости обычно служат высокочувствительные резонансные приборы.


3.1.7 Пьезоэлектрические манометры

Действие пьезоэлектрических манометров основано на свойствах некоторых  кристаллических веществ создавать  электрические заряды под действием  механической силы. Это явление называется пьезоэффектом.

Пьезоэффект наблюдается у кристаллов кварца, турмалина, сегнетовой соли, титаната бария и некоторых других веществ. Особенностью пьезоэффекта является его безынерционность. Заряды возникают мгновенно в момент приложения силы. Это обстоятельство делает пьезоэлектрические манометры незаменимыми при измерении и исследовании быстропротекающих процессов, связанных с изменением давления (индицирование быстроходных двигателей, изучение явлений кавитации, взрывных реакций и т.п.).

Для изготовления пьезоэлектрических датчиков наиболее широко применяется кварц, сочетающий хорошие пьезоэлектрические свойства с большой механической прочностью, высокими изоляционными свойствами и независимостью пьезоэлектрической характеристики в широких пределах от изменения температуры. Кварц SiO2 кристаллизуется в гексагональной системе, причем элементарной структурной ячейкой является шестигранная призма (рисунок 27). В кристаллах кварца различают продольную ось zz, которая носит название оптической оси, ось xx, проходящую через ребра призмы (электрическую ось), и оси уу, проходящие через середины противолежащих граней (механические или нейтральные). Если из кристалла кварца вырезать параллелепипед так, чтобы его грани были расположены перпендикулярно осям уу и хх, то он будет обладать пьезоэлектрическими свойствами. Силы, приложенные к нему по направлению оси zz, не вызовут электризации, а растягивающая или сжимающая сила Fx, приложенная по направлению электрической оси, вызовет появление разноименных зарядов на гранях, перпендикулярных к этой оси (продольный пьезоэффект).

 

Рисунок 27 – схема кристалла кварца

 

Величина заряда, возникающего на гранях, равна

 

,

 

или

 

,

 

где рх и Fх – давление и сила, действующие на площадь грани; sx – площадь грани; k – постоянная величина, так называемый пьезоэлектрический модуль.

При приложении силы Fy, действующей по направлению нейтральной оси, на гранях bс возникнут заряды противоположного знака по сравнению с силой, действующей по оси х.


Пьезоэлектрическая постоянная кварца практически не зависит от температуры в пределах до 500° С. При температурах выше 500° С она быстро уменьшается и при температуре 570° С становится равной нулю, т.е. кварц теряет пьезоэлектрические свойства.

 

Рисунок 28 – пьезокварцевый манометр: 1 – корпус, 2 и 9 – гайки; 3 – мембрана; 4 и 7 – шайбы; 5 – кварцевая пластина; 6 – плитка; 8 – шарик; 10 – втулка

 

Из других пьезоэлектриков  наибольшей чувствительностью обладает сегнетова соль. Однако высокая гигроскопичность, малая механическая прочность и низкое сопротивление сильно ограничивают ее применение. Применение в измерительной технике находит титанат бария, у которого пьезоэлектрический эффект в 50–60 раз выше, чем у кварца.

Устройство пьезокварцевого  манометра показано на рисунке 28. Корпус 1 датчика манометра ввернут в гайку 2, снабженную ниппелем для присоединения к объекту измерения. В нижней части корпус герметически закрыт мембраной 3, образующей дно корпуса. На мембрану положена металлическая шайба 4 с цилиндрической выточкой для помещения кварцевой пластины 5. На кварцевую пластину кладется плитка 6. На нее укладывается вторая кварцевая пластина, покрываемая металлической шайбой 7. В центре верхней плоскости шайбы 7 помещается стальной шарик 8. Пакет из кварцевых пластин и стальных шайб поджимается гайкой 9, образующей крышку датчика.

Кварцевые пластины располагаются  так, чтобы грани с отрицательным  зарядом были обращены к средней  плитке, а стороны с положительным  зарядом – к шайбам 4 и 7. К средней плитке 6 припаян проводник, выходящий из корпуса через отверстие в стенке, втулку 10 и через янтарный изолятор.

Возникающие на гранях кристалла  электростатические заряды сохраняются (при отсутствии утечки) во время  действия силы и исчезают в момент прекращения ее действия.

Так как возникающие  заряды очень малы, то прямое измерение  их невозможно. Для этого необходимо использовать такие приборы, которые не расходовали бы возникающих зарядов. Поэтому применяют ламповые вольтметры постоянного тока на электрометрических лампах в сочетании со шлейфовым или катодным осциллографом, а также электростатические вольтметры. Точность измерения пьезоэлектрическим манометром составляет ±1,5–2%.

3.1.8 Теплопроводные манометры

При низких давлениях, когда  длина свободного пробега молекул  соизмерима с геометрическими размерами  системы, теплопроводность газа зависит от давления. Эта зависимость используется в теплопроводных манометрах, применяемых для измерения давления газа в пределах от 0,0133 до 1333 Па (0,0001 – 10 мм рт. ст.) Датчик прибора состоит из нагревателя и измерителя температуры, помещенных в сосуд, в котором контролируется давление. В качестве измерителей температуры применяются термосопротивления и термопары (термопарный манометр). На рисунке 29 показана схема теплопроводного манометра низкого давления с термосопротивлением, включенным в мостовую схему. В два плеча моста включены нагреваемые током металлические или полупроводниковые термосопротивления Rt и RK. Постоянные сопротивления плеч моста R1 и R2.

Сопротивление R, расположено в измеряемой среде; сопротивление RK, выполняющее роль температурного компенсатора, запаяно в баллоне.

 

Рисунок 29 – схема теплопроводного манометра

Рисунок 30 – принципиальная схема термопарного манометра с термосопротивлением

1 – нагревательный элемент;

2 – термопара; 3 – источник тока; 4 – измерительный прибор


 

С изменением давления газа меняется его теплопроводность, что  приводит к изменению величины электрического сопротивления Rt, следовательно, к разбалансу моста.

В термопарных манометрах измеряется не сопротивление, а температура  проводника. Температура измеряется термопарой, термо ЭДС. которой является функцией измеряемого давления. Принципиальная схема термопарного манометра показана на рисунке 30. Манометр состоит из нагревательного элемента и термопары, замеряющей его температуру.

Элемент нагревается  от источника тока; термо – ЭДС. термопары замеряется милливольтметром или потенциометром. Элемент нагревается до температуры порядка 200° С. В некоторых термопарных манометрах нагревательный элемент и термопара конструктивно объединены в одном элементе.

Теплопроводные манометры градуируются по определенному газу, для которого они предназначены.

3.2 Выбор рационального метода измерения давления природного газа

 

Наиболее широко применяются  приборы (манометры, вакуумметры, мановакуумметры  и дифманометры) с одновитковой трубчатой пружиной, такие приборы имеют большой диапазон измерения, сравнительно небольшие габариты, простоту конструкции, надежность. Исходя из этого, для измерения давления в АСК давления природного газа мы будем использовать бесшкальный прибор с дифференциально-трансформаторным датчиком, принципиальная схема которого изображена на рисунке 21. Такой прибор предназначен (в комплекте со вторичным прибором типа КСД) для дистанционного измерения.

Информация о работе Автоматизация доменного процесса. АСК давления природного газа. Расчет измерительной схемы автоматического потенциометра (0–700˚С)