Эволюция вычислительной техники

Автор работы: Пользователь скрыл имя, 10 Декабря 2012 в 16:03, доклад

Описание работы

В традиционной трактовке эволюцию вычислительной техники представляют как последовательную смену поколений ВТ. Появление термина «поколение» от¬носится к 1964 году, когда фирма IBM выпустила серию компьютеров IBM 360, назвав эту серию «компьютерами третьего поколения». Сам термин имеет разные определения, наиболее популярными из которых являются:
• «Поколения вычислительных машин — это сложившееся в последнее время разбиение вычислительных машин на классы, определяемые элементной базой и производительностью».
• «Поколения компьютеров — нестрогая классификация вычислительных систем по степени развития аппаратных и, в последнее время, программных средств».

Файлы: 1 файл

Вычсист1.docx

— 34.31 Кб (Скачать файл)

В 1964 году Сеймур Крей (Seymour Cray, 1925-1996) построил вычислительную систему CDC 6600, в архитектуру которой впервые был заложен функциональный параллелизм. Благодаря наличию 10 независимых функциональных блоков, способных работать параллельно, и 32 независимых модулей памяти удалось достичь быстродействия в 1 MFLOPS (миллион операций с плавающей запятой в секунду). Пятью годами позже Крей создал CDC 7600 с конвейеризированными функциональными блоками и быстродействием 10 MFLOPS. CDC 7600 называют первой конвейерной вычислительной системой (конвейерным процессором). Революционной вехой в истории ВТ стало создание семейства вычислительных машин IBM 360, архитектура и программное обеспечение которых на долгие годы служили эталоном для последующих больших универсальных ВМ (mainframes). В машинах этого семейства нашли воплощение многие новые для того периода идеи, в частности: предварительная выборка команд, отдельные блоки для операций с фиксированной и плавающей запятой, конвейеризация команд, кэш-память.

В сфере  программного обеспечения необходимо отметить создание в 1970 году Кеном Томпсоном (Kenneth Thompson) из Bell Labs языка В, прямого предшественника популярного языка программирования С, и появление ранней версии операционной системы UNIX.

1.3.5. Четвертое поколение  (1972-1984)

 

Отсчет  четвертого поколения обычно ведут  с перехода на интегральные микросхемы большой (large-scale integration, LSI) и сверхбольшой (very large-scale integration, VLSI) степени интеграции. К первым относят схемы, содержащие около 1000 транзисторов на кристалле, в то время как число транзисторов на одном кристалле VLSI имеет порядок 100 000. При таких уровнях интеграции стало возможным уместить в одну микросхему не только центральный процессор, но и вычислительную машину (ЦП, основную память и систему ввода/вывода).

Конец 70-х  и начало 80-х годов — это  время становления и последующего победного шествия микропроцессоров и микроЭВМ.

Одним из наиболее значимых событий в области  архитектуры ВМ стала идея вычислительной машины с сокращенным набором  команд (RISC, Redused Instruction Set Computer), выдвинутая в 1975 году и впервые реализованная в 1980 году. В упрощенном изложении суть концепция RISC заключается в сведении набора команд ВМ к наиболее употребительным простейшим командам. Это позволяет упростить схемотехнику процессора и добиться резкого сокращения времени выполнения каждой из «простых» команд. Более сложные команды реализуются как подпрограммы, составленные из быстрых «простых» команд.

В ВМ и  ВС четвертого поколения практически уходят со сцены ЗУ на магнитных сердечниках и основная память строится из полупроводниковых запоминающих устройств (ЗУ). До этого использование полупроводниковых ЗУ ограничилось лишь регистрами и кэш-памятью.

В области  программного обеспечения выделим  появление языков программирования сверхвысокого уровня, таких как FP (functional programming — функциональное программирование) и Пролог (Prolog, programming in logic). Эти языки ориентированы на декларативный стиль программирования, в отличие от Паскаля, С, Фортрана и т. д. — языков императивного стиля программирования. При декларативном стиле программист дает математическое описание того, что должно быть вычислено, а детали того, каким образом это должно быть сделано, возлагаются на компилятор и операционную систему. Такие языки пока используются недостаточно широко, но выглядят многообещающими для ВС с массовым параллелизмом, состоящими из более чем 1000 процессоров. В компиляторах для ВС четвертого поколения начинают применяться сложные методы оптимизации кода.

Два события  в области программного обеспечения  связаны с Кеном Томпсоном (Kenneth Thompson) и Деннисом Ритчи (Dennis Ritchie) из Bell Labs. Это создание языка программирования С и его использование при написании операционной системы UNIX для машины DEC PDP-11. Такая форма написания операционной системы позволила быстро распространить UNIX на многие ВМ.

1.3.6. Пятое поколение (1984-1990)

 

Главным поводом для выделения вычислительных систем второй половины 80-х годов в самостоятельное поколение стало стремительное развитие ВС с сотнями процессоров, ставшее побудительным мотивом для прогресса в области параллельных вычислений. Ранее параллелизм вычислений выражался лишь в виде конвейеризации, векторной обработки и распределения работы между небольшим числом процессоров. Вычислительные системы пятого поколения обеспечивают такое распределение задач по множеству процессоров, при котором каждый из процессоров может выполнять задачу отдельного пользователя.

В рамках пятого поколения в архитектуре  вычислительных систем сформировались два принципиально различных подхода: архитектура с совместно используемой памятью и архитектура с распределенной памятью.

Характерным примером первого подхода может  служить система Sequent Balance 8000, в которой имеется большая основная память, разделяемая 20 процессорами. Помимо этого, каждый процессор оснащен собственной кэш-памятью. Каждый из процессоров может выполнять задачу своего пользователя, но при этом в составе программного обеспечения имеется библиотека подпрограмм, позволяющая программисту привлекать для решения своей задачи более одного процессора. Система широко использовалась для исследования параллельных алгоритмов и техники программирования.

Второе  направление развития систем пятого поколения — системы с распределенной памятью, где каждый процессор обладает своим модулем памяти, а связь между процессорами обеспечивается сетью взаимосвязей. Примером такой ВС может служить система iPSC-1 фирмы Intel, более известная как «гиперкуб». Максимальный вариант системы включал 128 процессоров. Применение распределенной памяти позволило устранить ограничения в пропускной способности тракта «процессор-память», но потенциальным «узким местом» здесь становится сеть взаимосвязей.

Наконец, третье направление в архитектуре  вычислительных систем пятого поколения  — это ВС, в которых несколько тысяч достаточно простых процессоров работают под управлением единого устройства управления и одновременно производят одну и ту же операцию, но каждый над своими данными. К этому классу можно отнести Connection Machine фирмы Thinking Machines Inc. и МР-1 фирмы MasPar Inc.

RISC-архитектура выходит из стадии экспериментов и становится базовой архитектурой для рабочих станций (workstations).

Знаковой  приметой рассматриваемого периода  стало стремительное развитие технологий глобальных и локальных компьютерных сетей. Это стимулировало изменения  в технологии работы индивидуальных пользователей. В противовес мощным универсальным ВС, работающим в режиме разделения времени, пользователи все более отдают предпочтение подключенным к сети индивидуальным рабочим станциям. Такой подход позволяет для решения небольших задач задействовать индивидуальную машину, а при необходимости в большой вычислительной мощности обратиться к ресурсам подсоединенных к той же сети мощных файл-серверов или суперЭВМ.


Информация о работе Эволюция вычислительной техники